Actual source code: test11.c
slepc-3.7.3 2016-09-29
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-2016, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
8: SLEPc is free software: you can redistribute it and/or modify it under the
9: terms of version 3 of the GNU Lesser General Public License as published by
10: the Free Software Foundation.
12: SLEPc is distributed in the hope that it will be useful, but WITHOUT ANY
13: WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14: FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15: more details.
17: You should have received a copy of the GNU Lesser General Public License
18: along with SLEPc. If not, see <http://www.gnu.org/licenses/>.
19: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
20: */
22: static char help[] = "Test BV block orthogonalization.\n\n";
24: #include <slepcbv.h>
28: int main(int argc,char **argv)
29: {
30: PetscErrorCode ierr;
31: BV X,Y,Z,cached;
32: Mat B,M;
33: Vec v,t;
34: PetscInt i,j,n=20,l=2,k=8,Istart,Iend;
35: PetscViewer view;
36: PetscBool verbose;
37: PetscReal norm;
38: PetscScalar alpha;
39: BVOrthogBlockType btype;
41: SlepcInitialize(&argc,&argv,(char*)0,help);
42: PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL);
43: PetscOptionsGetInt(NULL,NULL,"-l",&l,NULL);
44: PetscOptionsGetInt(NULL,NULL,"-k",&k,NULL);
45: PetscOptionsHasName(NULL,NULL,"-verbose",&verbose);
46: PetscPrintf(PETSC_COMM_WORLD,"Test BV block orthogonalization (length %D, l=%D, k=%D).\n",n,l,k);
48: /* Create template vector */
49: VecCreate(PETSC_COMM_WORLD,&t);
50: VecSetSizes(t,PETSC_DECIDE,n);
51: VecSetFromOptions(t);
53: /* Create BV object X */
54: BVCreate(PETSC_COMM_WORLD,&X);
55: PetscObjectSetName((PetscObject)X,"X");
56: BVSetSizesFromVec(X,t,k);
57: BVSetFromOptions(X);
58: BVGetOrthogonalization(X,NULL,NULL,NULL,&btype);
60: /* Set up viewer */
61: PetscViewerASCIIGetStdout(PETSC_COMM_WORLD,&view);
62: if (verbose) {
63: PetscViewerPushFormat(view,PETSC_VIEWER_ASCII_MATLAB);
64: }
66: /* Fill X entries */
67: for (j=0;j<k;j++) {
68: BVGetColumn(X,j,&v);
69: VecSet(v,0.0);
70: for (i=0;i<=n/2;i++) {
71: if (i+j<n) {
72: alpha = (3.0*i+j-2)/(2*(i+j+1));
73: VecSetValue(v,i+j,alpha,INSERT_VALUES);
74: }
75: }
76: VecAssemblyBegin(v);
77: VecAssemblyEnd(v);
78: BVRestoreColumn(X,j,&v);
79: }
80: if (btype==BV_ORTHOG_BLOCK_GS) { /* GS requires the leading columns to be orthogonal */
81: for (j=0;j<l;j++) {
82: BVOrthogonalizeColumn(X,j,NULL,&norm,NULL);
83: alpha = 1.0/norm;
84: BVScaleColumn(X,j,alpha);
85: }
86: }
87: if (verbose) {
88: BVView(X,view);
89: }
91: /* Create copy on Y */
92: BVDuplicate(X,&Y);
93: PetscObjectSetName((PetscObject)Y,"Y");
94: BVCopy(X,Y);
95: BVSetActiveColumns(Y,l,k);
96: BVSetActiveColumns(X,l,k);
98: /* Test BVOrthogonalize */
99: BVOrthogonalize(Y,NULL);
100: if (verbose) {
101: BVView(Y,view);
102: }
104: /* Check orthogonality */
105: MatCreateSeqDense(PETSC_COMM_SELF,k,k,NULL,&M);
106: MatShift(M,1.0); /* set leading part to identity */
107: BVDot(Y,Y,M);
108: MatShift(M,-1.0);
109: MatNorm(M,NORM_1,&norm);
110: if (norm<100*PETSC_MACHINE_EPSILON) {
111: PetscPrintf(PETSC_COMM_WORLD,"Level of orthogonality < 100*eps\n");
112: } else {
113: PetscPrintf(PETSC_COMM_WORLD,"Level of orthogonality: %g\n",(double)norm);
114: }
116: /* Create inner product matrix */
117: MatCreate(PETSC_COMM_WORLD,&B);
118: MatSetSizes(B,PETSC_DECIDE,PETSC_DECIDE,n,n);
119: MatSetFromOptions(B);
120: MatSetUp(B);
121: PetscObjectSetName((PetscObject)B,"B");
123: MatGetOwnershipRange(B,&Istart,&Iend);
124: for (i=Istart;i<Iend;i++) {
125: if (i>0) { MatSetValue(B,i,i-1,-1.0,INSERT_VALUES); }
126: if (i<n-1) { MatSetValue(B,i,i+1,-1.0,INSERT_VALUES); }
127: MatSetValue(B,i,i,2.0,INSERT_VALUES);
128: }
129: MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
130: MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
132: /* Prepare to repeat test, now with a non-standard inner product */
133: BVCopy(X,Y);
134: BVDuplicate(X,&Z);
135: PetscObjectSetName((PetscObject)Z,"Z");
136: BVSetActiveColumns(Z,l,k);
137: BVSetMatrix(X,B,PETSC_FALSE);
138: BVSetMatrix(Y,B,PETSC_FALSE);
139: if (btype==BV_ORTHOG_BLOCK_GS) { /* GS requires the leading columns to be orthogonal */
140: for (j=0;j<l;j++) {
141: BVOrthogonalizeColumn(Y,j,NULL,&norm,NULL);
142: alpha = 1.0/norm;
143: BVScaleColumn(Y,j,alpha);
144: }
145: }
146: if (verbose) {
147: BVView(X,view);
148: }
150: /* Test BVOrthogonalize */
151: BVOrthogonalize(Y,NULL);
152: if (verbose) {
153: BVView(Y,view);
154: }
156: /* Extract cached BV and check it is equal to B*X */
157: BVGetCachedBV(Y,&cached);
158: BVMatMult(X,B,Z);
159: BVMult(Z,-1.0,1.0,cached,NULL);
160: BVNorm(Z,NORM_FROBENIUS,&norm);
161: if (norm<100*PETSC_MACHINE_EPSILON) {
162: PetscPrintf(PETSC_COMM_WORLD,"Residual ||cached-BX|| < 100*eps\n");
163: } else {
164: PetscPrintf(PETSC_COMM_WORLD,"Residual ||cached-BX||: %g\n",(double)norm);
165: }
167: /* Check orthogonality */
168: MatZeroEntries(M);
169: MatShift(M,1.0); /* set leading part to identity */
170: BVDot(Y,Y,M);
171: MatShift(M,-1.0);
172: MatNorm(M,NORM_1,&norm);
173: if (norm<100*PETSC_MACHINE_EPSILON) {
174: PetscPrintf(PETSC_COMM_WORLD,"Level of orthogonality < 100*eps\n");
175: } else {
176: PetscPrintf(PETSC_COMM_WORLD,"Level of orthogonality: %g\n",(double)norm);
177: }
179: MatDestroy(&M);
180: MatDestroy(&B);
181: BVDestroy(&X);
182: BVDestroy(&Y);
183: BVDestroy(&Z);
184: VecDestroy(&t);
185: SlepcFinalize();
186: return ierr;
187: }