sfepy.terms.terms_piezo module¶
-
class
sfepy.terms.terms_piezo.
PiezoCouplingTerm
(name, arg_str, integral, region, **kwargs)[source]¶ Piezoelectric coupling term. Can be evaluated.
Definition: \int_{\Omega} g_{kij}\ e_{ij}(\ul{v}) \nabla_k p \mbox{ , } \int_{\Omega} g_{kij}\ e_{ij}(\ul{u}) \nabla_k q
Call signature: dw_piezo_coupling (material, virtual, state)
(material, state, virtual)
(material, parameter_v, parameter_s)
Arguments 1: - material : g_{kij}
- virtual : \ul{v}
- state : p
Arguments 2: - material : g_{kij}
- state : \ul{u}
- virtual : q
Arguments 3: - material : g_{kij}
- parameter_v : \ul{u}
- parameter_s : p
-
arg_shapes
= {'state/grad': 1, 'state/div': 'D', 'material': 'D, S', 'virtual/grad': ('D', None), 'parameter_s': 1, 'parameter_v': 'D', 'virtual/div': (1, None)}¶
-
arg_types
= (('material', 'virtual', 'state'), ('material', 'state', 'virtual'), ('material', 'parameter_v', 'parameter_s'))¶
-
modes
= ('grad', 'div', 'eval')¶
-
name
= 'dw_piezo_coupling'¶
-
class
sfepy.terms.terms_piezo.
PiezoStressTerm
(name, arg_str, integral, region, **kwargs)[source]¶ Evaluate piezoelectric stress tensor.
It is given in the usual vector form exploiting symmetry: in 3D it has 6 components with the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it has 3 components with the indices ordered as [11, 22, 12].
Supports ‘eval’, ‘el_avg’ and ‘qp’ evaluation modes.
Definition: \int_{\Omega} g_{kij} \nabla_k p
Call signature: ev_piezo_stress (material, parameter)
Arguments: - material : g_{kij}
- parameter : p
-
arg_shapes
= {'material': 'D, S', 'parameter': '1'}¶
-
arg_types
= ('material', 'parameter')¶
-
name
= 'ev_piezo_stress'¶