sfepy.terms.terms_basic module¶
-
class
sfepy.terms.terms_basic.
IntegrateMatTerm
(name, arg_str, integral, region, **kwargs)[source]¶ Evaluate material parameter m in a volume/surface region.
Depending on evaluation mode, integrate a material parameter over a volume/surface region (‘eval’), average it in elements/faces (‘el_avg’) or interpolate it into volume/surface quadrature points (‘qp’).
Uses reference mapping of y variable.
Supports ‘eval’, ‘el_avg’ and ‘qp’ evaluation modes.
Definition: \int_\Omega m
\mbox{vector for } K \from \Ical_h: \int_{T_K} m / \int_{T_K} 1
m|_{qp}
Call signature: ev_integrate_mat (material, parameter)
Arguments: - material : m (can have up to two dimensions)
- parameter : y
-
arg_shapes
= [{'material': '1, 1', 'parameter': 'N'}, {'material': 'D, D'}, {'material': 'S, S'}, {'material': 'D, S'}]¶
-
arg_types
= ('material', 'parameter')¶
-
name
= 'ev_integrate_mat'¶
-
class
sfepy.terms.terms_basic.
IntegrateSurfaceOperatorTerm
(name, arg_str, integral, region, **kwargs)[source]¶ Surface integral of a test function weighted by a scalar function c.
Definition: \int_{\Gamma} q \mbox{ or } \int_\Gamma c q
Call signature: dw_surface_integrate (opt_material, virtual)
Arguments: - material : c (optional)
- virtual : q
-
arg_shapes
= [{'opt_material': '1, 1', 'virtual': (1, None)}, {'opt_material': None}]¶
-
arg_types
= ('opt_material', 'virtual')¶
-
integration
= 'surface'¶
-
name
= 'dw_surface_integrate'¶
-
class
sfepy.terms.terms_basic.
IntegrateSurfaceTerm
(name, arg_str, integral, region, **kwargs)[source]¶ Evaluate (weighted) variable in a surface region.
Depending on evaluation mode, integrate a variable over a surface region (‘eval’), average it in element faces (‘el_avg’) or interpolate it into surface quadrature points (‘qp’). For vector variables, setting term_mode to ‘flux’ leads to computing corresponding fluxes for the three modes instead.
Supports ‘eval’, ‘el_avg’ and ‘qp’ evaluation modes.
Definition: \int_\Gamma y \mbox{ , } \int_\Gamma \ul{y} \mbox{ , } \int_\Gamma \ul{y} \cdot \ul{n} \\ \int_\Gamma c y \mbox{ , } \int_\Gamma c \ul{y} \mbox{ , } \int_\Gamma c \ul{y} \cdot \ul{n} \mbox{ flux }
\mbox{vector for } K \from \Ical_h: \int_{T_K} y / \int_{T_K} 1 \mbox{ , } \int_{T_K} \ul{y} / \int_{T_K} 1 \mbox{ , } \int_{T_K} (\ul{y} \cdot \ul{n}) / \int_{T_K} 1 \\ \mbox{vector for } K \from \Ical_h: \int_{T_K} c y / \int_{T_K} 1 \mbox{ , } \int_{T_K} c \ul{y} / \int_{T_K} 1 \mbox{ , } \int_{T_K} (c \ul{y} \cdot \ul{n}) / \int_{T_K} 1
y|_{qp} \mbox{ , } \ul{y}|_{qp} \mbox{ , } (\ul{y} \cdot \ul{n})|_{qp} \mbox{ flux } \\ c y|_{qp} \mbox{ , } c \ul{y}|_{qp} \mbox{ , } (c \ul{y} \cdot \ul{n})|_{qp} \mbox{ flux }
Call signature: ev_surface_integrate (opt_material, parameter)
Arguments: - material : c (optional)
- parameter : y or \ul{y}
-
arg_shapes
= [{'opt_material': '1, 1', 'parameter': 'N'}, {'opt_material': None}]¶
-
arg_types
= ('opt_material', 'parameter')¶
-
integration
= 'surface'¶
-
name
= 'ev_surface_integrate'¶
-
class
sfepy.terms.terms_basic.
IntegrateVolumeOperatorTerm
(name, arg_str, integral, region, **kwargs)[source]¶ Volume integral of a test function weighted by a scalar function c.
Definition: \int_\Omega q \mbox{ or } \int_\Omega c q
Call signature: dw_volume_integrate (opt_material, virtual)
Arguments: - material : c (optional)
- virtual : q
-
arg_shapes
= [{'opt_material': '1, 1', 'virtual': (1, None)}, {'opt_material': None}]¶
-
arg_types
= ('opt_material', 'virtual')¶
-
name
= 'dw_volume_integrate'¶
-
class
sfepy.terms.terms_basic.
IntegrateVolumeTerm
(name, arg_str, integral, region, **kwargs)[source]¶ Evaluate (weighted) variable in a volume region.
Depending on evaluation mode, integrate a variable over a volume region (‘eval’), average it in elements (‘el_avg’) or interpolate it into volume quadrature points (‘qp’).
Supports ‘eval’, ‘el_avg’ and ‘qp’ evaluation modes.
Definition: \int_\Omega y \mbox{ , } \int_\Omega \ul{y} \\ \int_\Omega c y \mbox{ , } \int_\Omega c \ul{y}
\mbox{vector for } K \from \Ical_h: \int_{T_K} y / \int_{T_K} 1 \mbox{ , } \int_{T_K} \ul{y} / \int_{T_K} 1 \\ \mbox{vector for } K \from \Ical_h: \int_{T_K} c y / \int_{T_K} 1 \mbox{ , } \int_{T_K} c \ul{y} / \int_{T_K} 1
y|_{qp} \mbox{ , } \ul{y}|_{qp} \\ c y|_{qp} \mbox{ , } c \ul{y}|_{qp}
Call signature: ev_volume_integrate (opt_material, parameter)
Arguments: - material : c (optional)
- parameter : y or \ul{y}
-
arg_shapes
= [{'opt_material': '1, 1', 'parameter': 'N'}, {'opt_material': None}]¶
-
arg_types
= ('opt_material', 'parameter')¶
-
name
= 'ev_volume_integrate'¶
-
class
sfepy.terms.terms_basic.
SumNodalValuesTerm
(name, arg_str, integral, region, **kwargs)[source]¶ Sum nodal values.
Call signature: d_sum_vals (parameter)
Arguments: - parameter : p or \ul{u}
-
arg_shapes
= {'parameter': 'N'}¶
-
arg_types
= ('parameter',)¶
-
name
= 'd_sum_vals'¶
-
class
sfepy.terms.terms_basic.
SurfaceMomentTerm
(name, arg_str, integral, region, **kwargs)[source]¶ Surface integral of the outer product of the unit outward normal \ul{n} and the coordinate \ul{x} shifted by \ul{x}_0
Definition: \int_{\Gamma} \ul{n} (\ul{x} - \ul{x}_0)
Call signature: d_surface_moment (parameter, shift)
Arguments: - parameter : any variable
- shift : \ul{x}_0
-
arg_types
= ('parameter', 'shift')¶
-
static
function
()¶
-
integration
= 'surface'¶
-
name
= 'd_surface_moment'¶
-
class
sfepy.terms.terms_basic.
SurfaceTerm
(name, arg_str, integral, region, **kwargs)[source]¶ Surface of a domain. Uses approximation of the parameter variable.
Definition: \int_\Gamma 1
Call signature: d_surface (parameter)
Arguments: - parameter : any variable
-
arg_shapes
= {'parameter': 'N'}¶
-
arg_types
= ('parameter',)¶
-
integration
= 'surface'¶
-
name
= 'd_surface'¶
-
class
sfepy.terms.terms_basic.
VolumeSurfaceTerm
(name, arg_str, integral, region, **kwargs)[source]¶ Volume of a D-dimensional domain, using a surface integral. Uses approximation of the parameter variable.
Definition: 1 / D \int_\Gamma \ul{x} \cdot \ul{n}
Call signature: d_volume_surface (parameter)
Arguments: - parameter : any variable
-
arg_shapes
= {'parameter': 'N'}¶
-
arg_types
= ('parameter',)¶
-
static
function
()¶
-
integration
= 'surface'¶
-
name
= 'd_volume_surface'¶
-
class
sfepy.terms.terms_basic.
VolumeTerm
(name, arg_str, integral, region, **kwargs)[source]¶ Volume of a domain. Uses approximation of the parameter variable.
Definition: \int_\Omega 1
Call signature: d_volume (parameter)
Arguments: - parameter : any variable
-
arg_shapes
= [{'parameter': 'N'}]¶
-
arg_types
= ('parameter',)¶
-
name
= 'd_volume'¶