1. 1. Introduction
  2. 2. Meet Safe and Unsafe
    1. 2.1. How Safe and Unsafe Interact
    2. 2.2. Working with Unsafe
  3. 3. Data Layout
    1. 3.1. repr(Rust)
    2. 3.2. Exotically Sized Types
    3. 3.3. Other reprs
  4. 4. Ownership
    1. 4.1. References
    2. 4.2. Lifetimes
    3. 4.3. Limits of Lifetimes
    4. 4.4. Lifetime Elision
    5. 4.5. Unbounded Lifetimes
    6. 4.6. Higher-Rank Trait Bounds
    7. 4.7. Subtyping and Variance
    8. 4.8. Drop Check
    9. 4.9. PhantomData
    10. 4.10. Splitting Borrows
  5. 5. Type Conversions
    1. 5.1. Coercions
    2. 5.2. The Dot Operator
    3. 5.3. Casts
    4. 5.4. Transmutes
  6. 6. Uninitialized Memory
    1. 6.1. Checked
    2. 6.2. Drop Flags
    3. 6.3. Unchecked
  7. 7. Ownership Based Resource Management
    1. 7.1. Constructors
    2. 7.2. Destructors
    3. 7.3. Leaking
  8. 8. Unwinding
    1. 8.1. Exception Safety
    2. 8.2. Poisoning
  9. 9. Concurrency
    1. 9.1. Races
    2. 9.2. Send and Sync
    3. 9.3. Atomics
  10. 10. Implementing Vec
    1. 10.1. Layout
    2. 10.2. Allocating
    3. 10.3. Push and Pop
    4. 10.4. Deallocating
    5. 10.5. Deref
    6. 10.6. Insert and Remove
    7. 10.7. IntoIter
    8. 10.8. RawVec
    9. 10.9. Drain
    10. 10.10. Handling Zero-Sized Types
    11. 10.11. Final Code
  11. 11. Implementing Arc and Mutex

The Perils Of Ownership Based Resource Management (OBRM)

OBRM (AKA RAII: Resource Acquisition Is Initialization) is something you'll interact with a lot in Rust. Especially if you use the standard library.

Roughly speaking the pattern is as follows: to acquire a resource, you create an object that manages it. To release the resource, you simply destroy the object, and it cleans up the resource for you. The most common "resource" this pattern manages is simply memory. Box, Rc, and basically everything in std::collections is a convenience to enable correctly managing memory. This is particularly important in Rust because we have no pervasive GC to rely on for memory management. Which is the point, really: Rust is about control. However we are not limited to just memory. Pretty much every other system resource like a thread, file, or socket is exposed through this kind of API.