42 namespace Test {
namespace Int {
45 namespace MiniModelLin {
65 unsigned char x,
y,
z;
75 case LO_ACE: reg[pc->
y] = pc->
c + reg[pc->
x];
break;
76 case LO_AEC: reg[pc->
y] = reg[pc->
x] + pc->
c;
break;
77 case LO_AEE: reg[pc->
z] = reg[pc->
x] + reg[pc->
y];
break;
78 case LO_SCE: reg[pc->
y] = pc->
c - reg[pc->
x];
break;
79 case LO_SEC: reg[pc->
y] = reg[pc->
x] - pc->
c;
break;
80 case LO_SEE: reg[pc->
z] = reg[pc->
x] - reg[pc->
y];
break;
81 case LO_SE: reg[pc->
y] = -reg[pc->
x];
break;
82 case LO_MCE: reg[pc->
y] = pc->
c * reg[pc->
x];
break;
83 case LO_MEC: reg[pc->
y] = reg[pc->
x] * pc->
c;
break;
105 :
Test(
"MiniModel::LinExpr::Int::"+s,4,-3,3), lis(lis0) {
110 int reg[3] = {x[0],x[1],x[2]};
111 return eval(lis, reg) == x[3];
129 :
Test(
"MiniModel::LinExpr::Bool::"+s,4,-3,3), lis(lis0) {
135 if ((x[
i] < 0) || (x[
i] > 1))
137 int reg[3] = {x[0],x[1],x[2]};
138 return eval(lis, reg) == x[3];
158 :
Test(
"MiniModel::LinExpr::Mixed::"+s,4,-3,3), lis(lis0) {
163 if ((x[2] < 0) || (x[2] > 1))
165 int reg[3] = {x[0],x[1],x[2]};
166 return eval(lis, reg) == x[3];
192 :
Test(
"MiniModel::LinRel::Int::"+s+
"::"+str(irt0),3,-3,3,true),
193 l_lis(l_lis0), r_lis(r_lis0), irt(irt0) {
199 int l_reg[3] = {x[0],x[1],x[2]};
200 int r_reg[3] = {x[0],x[1],x[2]};
201 return cmp(
eval(l_lis,l_reg),irt,
eval(r_lis,r_reg));
246 (
eval(l_lis,l_reg)==
eval(r_lis,r_reg))),
251 (
eval(l_lis,l_reg)!=
eval(r_lis,r_reg)) == r.
var());
255 !((
eval(l_lis,l_reg)<=
eval(r_lis,r_reg))^r.
var()));
259 (
eval(l_lis,l_reg)<
eval(r_lis,r_reg))),
264 (
eval(l_lis,l_reg)>=
eval(r_lis,r_reg)) == r.
var());
288 :
Test(
"MiniModel::LinRel::Bool::"+s+
"::"+str(irt0),3,0,1,true),
289 l_lis(l_lis0), r_lis(r_lis0), irt(irt0) {
295 int l_reg[3] = {x[0],x[1],x[2]};
296 int r_reg[3] = {x[0],x[1],x[2]};
297 return cmp(
eval(l_lis,l_reg),irt,
eval(r_lis,r_reg));
348 (
eval(l_lis,l_reg)==
eval(r_lis,r_reg))),
353 (
eval(l_lis,l_reg)!=
eval(r_lis,r_reg)) == r.
var());
357 !((
eval(l_lis,l_reg)<=
eval(r_lis,r_reg))^r.
var()));
361 (
eval(l_lis,l_reg)<
eval(r_lis,r_reg))),
366 (
eval(l_lis,l_reg)>=
eval(r_lis,r_reg)) == r.
var());
390 :
Test(
"MiniModel::LinRel::Mixed::"+s+
"::"+str(irt0),6,0,1,true),
391 l_lis(l_lis0), r_lis(r_lis0), irt(irt0) {
397 int l_reg[3] = {x[0],x[1],x[2]};
398 int r_reg[3] = {x[3],x[4],x[5]};
399 return cmp(
eval(l_lis,l_reg),irt,
eval(r_lis,r_reg));
440 (
eval(l_lis,l_reg)==
eval(r_lis,r_reg))),
445 (
eval(l_lis,l_reg)!=
eval(r_lis,r_reg))),
450 (
eval(l_lis,l_reg)<=
eval(r_lis,r_reg))),
455 (
eval(l_lis,l_reg)<
eval(r_lis,r_reg))),
460 (
eval(l_lis,l_reg)>=
eval(r_lis,r_reg))),
465 (
eval(l_lis,l_reg)>
eval(r_lis,r_reg))),
474 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
478 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
482 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
486 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
490 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
494 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
498 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
502 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
506 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
510 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
514 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
518 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
522 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
526 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
530 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
534 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
538 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
542 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
546 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
550 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
554 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
558 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
562 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
566 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
570 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
574 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
578 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
582 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
586 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
590 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
594 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
598 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
602 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
606 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
610 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
614 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
618 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
622 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
626 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
630 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
634 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
638 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
642 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
646 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
650 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
654 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
658 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
662 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
666 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
670 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
674 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
678 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
682 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
686 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
690 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
694 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
698 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
702 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
706 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
710 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
714 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
718 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
722 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
726 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
730 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
734 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
738 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
742 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
746 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
750 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
754 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
758 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
762 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
766 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
770 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
774 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
778 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
782 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
786 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
790 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
794 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
798 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
802 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
806 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
810 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
814 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
818 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
822 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
826 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
830 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
834 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
838 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
842 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
846 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
850 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
854 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
858 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
862 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
866 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
870 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
874 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
878 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
882 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
886 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
890 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
894 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
898 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
902 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
906 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
910 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
914 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
918 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
922 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
926 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
930 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
934 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
938 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
942 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
946 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
950 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
954 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
958 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
962 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
966 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
970 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
974 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
978 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
982 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
986 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
990 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
994 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
998 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1002 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1006 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1010 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1014 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1018 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1022 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1026 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1030 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1034 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1038 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1042 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1046 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1050 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1054 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1058 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1062 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1066 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1070 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1074 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1078 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1082 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1086 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1090 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1094 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1098 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1102 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1106 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1110 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1114 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1118 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1122 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1126 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1130 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1134 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1138 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1142 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1146 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1150 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1154 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1158 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1162 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1166 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1170 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1174 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1178 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1182 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1186 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1190 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1194 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1198 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1202 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1206 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1210 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1214 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1218 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1222 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1226 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1230 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1234 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1238 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1242 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1246 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1250 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1254 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1258 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1262 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1266 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1270 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1274 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1278 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1282 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1286 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1290 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1294 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1298 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1302 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1306 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1310 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1314 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1318 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1322 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1326 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1330 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1334 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1338 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1342 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1346 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1350 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1354 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1358 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1362 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1366 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1370 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1374 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1378 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1382 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1386 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1390 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1394 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1398 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1402 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1406 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1410 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1414 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1418 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1422 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1426 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1430 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1434 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1438 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1442 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1446 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1450 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1454 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1458 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1462 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1466 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1470 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1474 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1478 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1482 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1486 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1490 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1494 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1498 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1502 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1506 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1510 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1514 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1518 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1522 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1526 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1530 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1534 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1538 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1542 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1546 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1550 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1554 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1558 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1562 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1566 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1570 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1574 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1578 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1582 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1586 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1590 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1594 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1598 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1602 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1606 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1610 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1614 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1618 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1622 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1626 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1630 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1634 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1638 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1642 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1646 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1650 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1654 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1658 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1662 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1666 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1670 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1674 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1678 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1682 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1686 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1690 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1694 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1698 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1702 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1706 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1710 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1714 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1718 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1722 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1726 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1730 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1734 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1738 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1742 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1746 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1750 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1754 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1758 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1762 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1766 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1770 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1774 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1778 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1782 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1786 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1790 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1794 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1798 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1802 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1806 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1810 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1814 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1818 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1822 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1826 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1830 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1834 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1838 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1842 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1846 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1850 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1854 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1858 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1862 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1866 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1870 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1874 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1878 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1882 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1886 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1890 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1894 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1898 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1902 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1906 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1910 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1914 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1918 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1922 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1926 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1930 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1934 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1938 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1942 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1946 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1950 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1954 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1958 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1962 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1966 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1970 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1974 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1978 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1982 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1986 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1990 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1994 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1998 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
2002 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
2006 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
2010 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
2014 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
2018 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
2022 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
2026 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
2030 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
2034 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
2038 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
2042 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
2046 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
2050 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
2054 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
2058 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
2062 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
2066 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
2070 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
2075 &li000[0],&li001[0],&li002[0],&li003[0],&li004[0],&li005[0],
2076 &li006[0],&li007[0],&li008[0],&li009[0],&li010[0],&li011[0],
2077 &li012[0],&li013[0],&li014[0],&li015[0],&li016[0],&li017[0],
2078 &li018[0],&li019[0],&li020[0],&li021[0],&li022[0],&li023[0],
2079 &li024[0],&li025[0],&li026[0],&li027[0],&li028[0],&li029[0],
2080 &li030[0],&li031[0],&li032[0],&li033[0],&li034[0],&li035[0],
2081 &li036[0],&li037[0],&li038[0],&li039[0],&li040[0],&li041[0],
2082 &li042[0],&li043[0],&li044[0],&li045[0],&li046[0],&li047[0],
2083 &li048[0],&li049[0],&li050[0],&li051[0],&li052[0],&li053[0],
2084 &li054[0],&li055[0],&li056[0],&li057[0],&li058[0],&li059[0],
2085 &li060[0],&li061[0],&li062[0],&li063[0],&li064[0],&li065[0],
2086 &li066[0],&li067[0],&li068[0],&li069[0],&li070[0],&li071[0],
2087 &li072[0],&li073[0],&li074[0],&li075[0],&li076[0],&li077[0],
2088 &li078[0],&li079[0],&li080[0],&li081[0],&li082[0],&li083[0],
2089 &li084[0],&li085[0],&li086[0],&li087[0],&li088[0],&li089[0],
2090 &li090[0],&li091[0],&li092[0],&li093[0],&li094[0],&li095[0],
2091 &li096[0],&li097[0],&li098[0],&li099[0],&li100[0],&li101[0],
2092 &li102[0],&li103[0],&li104[0],&li105[0],&li106[0],&li107[0],
2093 &li108[0],&li109[0],&li110[0],&li111[0],&li112[0],&li113[0],
2094 &li114[0],&li115[0],&li116[0],&li117[0],&li118[0],&li119[0],
2095 &li120[0],&li121[0],&li122[0],&li123[0],&li124[0],&li125[0],
2096 &li126[0],&li127[0],&li128[0],&li129[0],&li130[0],&li131[0],
2097 &li132[0],&li133[0],&li134[0],&li135[0],&li136[0],&li137[0],
2098 &li138[0],&li139[0],&li140[0],&li141[0],&li142[0],&li143[0],
2099 &li144[0],&li145[0],&li146[0],&li147[0],&li148[0],&li149[0],
2100 &li150[0],&li151[0],&li152[0],&li153[0],&li154[0],&li155[0],
2101 &li156[0],&li157[0],&li158[0],&li159[0],&li160[0],&li161[0],
2102 &li162[0],&li163[0],&li164[0],&li165[0],&li166[0],&li167[0],
2103 &li168[0],&li169[0],&li170[0],&li171[0],&li172[0],&li173[0],
2104 &li174[0],&li175[0],&li176[0],&li177[0],&li178[0],&li179[0],
2105 &li180[0],&li181[0],&li182[0],&li183[0],&li184[0],&li185[0],
2106 &li186[0],&li187[0],&li188[0],&li189[0],&li190[0],&li191[0],
2107 &li192[0],&li193[0],&li194[0],&li195[0],&li196[0],&li197[0],
2108 &li198[0],&li199[0],&li200[0],&li201[0],&li202[0],&li203[0],
2109 &li204[0],&li205[0],&li206[0],&li207[0],&li208[0],&li209[0],
2110 &li210[0],&li211[0],&li212[0],&li213[0],&li214[0],&li215[0],
2111 &li216[0],&li217[0],&li218[0],&li219[0],&li220[0],&li221[0],
2112 &li222[0],&li223[0],&li224[0],&li225[0],&li226[0],&li227[0],
2113 &li228[0],&li229[0],&li230[0],&li231[0],&li232[0],&li233[0],
2114 &li234[0],&li235[0],&li236[0],&li237[0],&li238[0],&li239[0],
2115 &li240[0],&li241[0],&li242[0],&li243[0],&li244[0],&li245[0],
2116 &li246[0],&li247[0],&li248[0],&li249[0],&li250[0],&li251[0],
2117 &li252[0],&li253[0],&li254[0],&li255[0],&li256[0],&li257[0],
2118 &li258[0],&li259[0],&li260[0],&li261[0],&li262[0],&li263[0],
2119 &li264[0],&li265[0],&li266[0],&li267[0],&li268[0],&li269[0],
2120 &li270[0],&li271[0],&li272[0],&li273[0],&li274[0],&li275[0],
2121 &li276[0],&li277[0],&li278[0],&li279[0],&li280[0],&li281[0],
2122 &li282[0],&li283[0],&li284[0],&li285[0],&li286[0],&li287[0],
2123 &li288[0],&li289[0],&li290[0],&li291[0],&li292[0],&li293[0],
2124 &li294[0],&li295[0],&li296[0],&li297[0],&li298[0],&li299[0],
2125 &li300[0],&li301[0],&li302[0],&li303[0],&li304[0],&li305[0],
2126 &li306[0],&li307[0],&li308[0],&li309[0],&li310[0],&li311[0],
2127 &li312[0],&li313[0],&li314[0],&li315[0],&li316[0],&li317[0],
2128 &li318[0],&li319[0],&li320[0],&li321[0],&li322[0],&li323[0],
2129 &li324[0],&li325[0],&li326[0],&li327[0],&li328[0],&li329[0],
2130 &li330[0],&li331[0],&li332[0],&li333[0],&li334[0],&li335[0],
2131 &li336[0],&li337[0],&li338[0],&li339[0],&li340[0],&li341[0],
2132 &li342[0],&li343[0],&li344[0],&li345[0],&li346[0],&li347[0],
2133 &li348[0],&li349[0],&li350[0],&li351[0],&li352[0],&li353[0],
2134 &li354[0],&li355[0],&li356[0],&li357[0],&li358[0],&li359[0],
2135 &li360[0],&li361[0],&li362[0],&li363[0],&li364[0],&li365[0],
2136 &li366[0],&li367[0],&li368[0],&li369[0],&li370[0],&li371[0],
2137 &li372[0],&li373[0],&li374[0],&li375[0],&li376[0],&li377[0],
2138 &li378[0],&li379[0],&li380[0],&li381[0],&li382[0],&li383[0],
2139 &li384[0],&li385[0],&li386[0],&li387[0],&li388[0],&li389[0],
2140 &li390[0],&li391[0],&li392[0],&li393[0],&li394[0],&li395[0],
2141 &li396[0],&li397[0],&li398[0],&li399[0],
2150 for (
int i=0;
i<
n;
i++) {
2154 }
else if (
i < 100) {
2162 for (
int i=0;
i<n/2;
i++) {
2166 }
else if (
i < 100) {
Test linear expressions over integer and Boolean variables
virtual bool solution(const Assignment &x) const
Test whether x is solution
void channel(Home home, FloatVar x0, IntVar x1)
Post propagator for channeling a float and an integer variable .
ReifyMode mode(void) const
Return reification mode.
virtual void post(Gecode::Space &home, Gecode::IntVarArray &x)
Post constraint on x.
virtual void post(Gecode::Space &home, Gecode::IntVarArray &x, Gecode::Reify r)
Post constraint on x for r.
LinExprMixed(const LinInstr *lis0, const std::string &s)
Create and register test.
Gecode::IntRelType irt
Integer relation type to propagate.
virtual void post(Gecode::Space &home, Gecode::IntVarArray &x, Gecode::Reify r)
Post constraint on x for r.
Type for representing a linear instruction.
virtual void post(Gecode::Space &home, Gecode::IntVarArray &x)
Post constraint on x.
virtual bool solution(const Assignment &x) const
Test whether x is solution
Multiply constant and expression.
LinRelInt(const LinInstr *l_lis0, const LinInstr *r_lis0, Gecode::IntRelType irt0, const std::string &s)
Create and register test.
Expr eval(const LinInstr *pc, Expr reg[])
Evaluate linear instructions.
Gecode::IntRelType irt
Integer relation type to propagate.
const LinInstr * l_lis
Linear instruction sequence for left hand side.
const LinInstr * lis
Linear instruction sequence.
LinExprInt(const LinInstr *lis0, const std::string &s)
Create and register test.
Test linear expressions over Boolean variables
const LinInstr * r_lis
Linear instruction sequence for right hand side.
static std::string str(Gecode::ExtensionalPropKind epk)
Map extensional propagation kind to string.
Help class to create and register tests.
Add integer and expression.
virtual bool solution(const Assignment &x) const
Test whether x is solution
Gecode::IntArgs i(4, 1, 2, 3, 4)
int n
Number of negative literals for node type.
IntRelType
Relation types for integers.
virtual bool solution(const Assignment &x) const
Test whether x is solution
Gecode::IntRelType irt
Integer relation type to propagate.
Add expression and integer.
Gecode::IntRelType irt(void) const
Return current relation type.
LinExprBool(const LinInstr *lis0, const std::string &s)
Create and register test.
Iterator for integer relation types.
const LinInstr * r_lis
Linear instruction sequence for right hand side.
virtual void post(Gecode::Space &home, Gecode::IntVarArray &x, Gecode::Reify r)
Post constraint on x for r.
virtual void post(Gecode::Space &home, Gecode::IntVarArray &x)
Post constraint on x.
Reification specification.
virtual bool solution(const Assignment &x) const
Test whether x is solution
virtual void post(Gecode::Space &home, Gecode::IntVarArray &x)
Post constraint on x.
struct Gecode::@519::NNF::@60::@62 a
For atomic nodes.
LinOpcode o
Which instruction to execute.
Passing integer variables.
Passing integer arguments.
Passing Boolean variables.
Test linear relations over Boolean variables
Create(void)
Perform creation and registration.
LinRelBool(const LinInstr *l_lis0, const LinInstr *r_lis0, Gecode::IntRelType irt0, const std::string &s)
Create and register test.
BoolVar expr(Home home, const BoolExpr &e, IntConLevel icl)
Post Boolean expression and return its value.
Test linear expressions over integer variables
Subtract integer and expression.
Multiply constant and expression.
Linear expressions over integer variables.
Base class for assignments
LinRelMixed(const LinInstr *l_lis0, const LinInstr *r_lis0, Gecode::IntRelType irt0, const std::string &s)
Create and register test.
void rel(Home home, FloatVar x0, FloatRelType frt, FloatVal n)
Propagates .
Subtract expression and integer.
const LinInstr * l_lis
Linear instruction sequence for left hand side.
BoolVar var(void) const
Return Boolean control variable.
const LinInstr * r_lis
Linear instruction sequence for right hand side.
Test linear relations over integer and Boolean variables
virtual void post(Gecode::Space &home, Gecode::IntVarArray &x)
Post constraint on x.
unsigned char z
Instruction arguments, y is destination (or z)
virtual void post(Gecode::Space &home, Gecode::IntVarArray &x)
Post constraint on x.
const LinInstr * lis
Linear instruction sequence.
Gecode toplevel namespace
LinFloatExpr sum(const FloatVarArgs &x)
Construct linear float expression as sum of float variables.
const LinInstr * lis
Linear instruction sequence.
void reset(void)
Reset iterator.
virtual bool solution(const Assignment &x) const
Test whether x is solution
#define GECODE_NEVER
Assert that this command is never executed.
Test linear relations over integer variables
const LinInstr * l_lis
Linear instruction sequence for left hand side.
Equivalence for reification (default)