OpenMP™ Runtime 2.x

User’s Guide

Publication Date: April 28, 2014

13 TEXAS
INSTRUMENTS

Technology for Innovators®™ Wi TEXAS INSTRUMENTS

Document License
This work is licensed under the Creative Commons Attribution-NoDerivs 3.0 Unported License. To
view a copy of this license, visit http:/ /creativecommons.org/licenses/by-nd/3.0 or send a letter to Cre-

ative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA.

Copyright ©Texas Instruments Incorporated 2014 - http:/ /www.ti.com

Copyright ©Texas Instruments 2014 1

Technology for Innovators®™ Wi TEXAS INSTRUMENTS

Contents
I—Overview] 5
1.1 DevicesSupported| 5
1.2 Modesof Operation|. 5
(1.3 Software Architecturel. L 5
2 Building an OpenMP Application| 6
2.1 Build Prerequisites| 6
2.2 Building Applications Within CCS| 6
2.3 Building Applications Using Makefiles|. 9
[3 Configuring the Runtime| 9
3.1 RTSCmode Configuration| 9
E.l.l Configuring Cores| 10
|3.1.2 § onfiguring Memory Regions| L 10
BI3 Configuringthe Heap| 10
[3.1.4 Configuring Reset and Startup functions| 11
3.2 Bare-metal Mode Configuration|. L 11
21 _Tlompreset| 12
322 _Tlomp._configure|. 13
B3 Platformflel oot 14
831 DeviceNamel 14
[3.32 CPUClock Frequency| 14
.33 MemoryRegions| oo 14
[4 Integrating Applications Using QMSS| 16
[5 OpenCL Mode| 16
5.1 Dispatching OpenMP withOpenCL|, 16
6 OpenMP 3.0 Implementation-Defined Behaviors| 17
[7 Migration Guide| 18
[7.1 _Key Differences between OpenMP Runtime I.xand 2.x| 18
[72 Porting an OpenMP Runtime T.x Application t0 2.Xo vt v v vt e 18
[8 Resource Usage| 19
[0 Reducing Memory Footprint in L2SRAM] 20
... 20
(10 Building the Runtime| 21
(11 Defect Reporting| 21
(12 Version History| 22
23
[13.1 RTSC Mode Configuration Parameters{. 23
[(3:2 Bare-metal Configuration Functions]ttt 25
Copyright ©Texas Instruments 2014 2

Technology for Innovators®™ Wi TEXAS INSTRUMENTS

List of Figures

I Software architecture (Bare-Metal) 6
2 Creatinganew RTSCoproject] oo 7
B Disable un 0 5YMBOL TMAIN] - - - « « « « « « e e e e e e 8
4 Dispatching OpenMP regions with OpenCL APIs| 17
List of Tables
I~ Comparison of bare-metal and RISCmodes|. 5
2 RISC Component Versions| 7
B ResourceUsage|l 19
Listings
[l Configuring the OpenMP runtime modef. 9
R Configuring Cores|o 10
B Configuring Memory Regions| 10
i ConfiguringtheHeap| 11
b Configuring Reset function| 11
& ConRguring SEItup FANCHON . - - - -« « « « oo oo 11
[/ Defaultreset function, _TTompreset] 12
{8 Detault configuration function, __Il_omp_configure| 13
9 Sample C6678 Platform file] L 15
10 OpenMPxdc| 23
11 tomp_config.q 26

Copyright ©Texas Instruments 2014 3

Technology for Innovators” Rip TEXAS INSTRUMENTS

Glossary

Application configuration file
The .cfg file is a RTSC file used to configure the application. It typically includes OpenMP configura-
tion as well as configuration for other RTSC modules.

Platform file
The Platform.xdc file that describes memory regions available on the target platform. The regions in
the platform file are included in the linker command file that is created as the result of a RTSC build
of the platform file.

Acronyms
BIOS Short for SYS/BIOS, a scalable real-time kernel
CCS Code Composer Studio
IPC Inter Process Communication
MCSDK Multi-Core Software Development Kit
PDK Platform Development Kit
OMSS Queue Manager Sub System

RTSC Real Time Software Components

Copyright ©Texas Instruments 2014 4

W3 TEXAS INSTRUMENTS

Technology for Innovators”

1 Overview

The OpenMP Runtime 2.1 implements support for the OpenMP 3.0 API specification. OpenMP is the de
facto industry standard for shared memory parallel programming. It enables incremental parallelization of
existing code bases and is portable across shared memory architectures. More information on the OpenMP
API (including the API specification) is available at http: //www.openmp. orgl

The two main components of an OpenMP implementation are a compiler and a corresponding runtime.
This User’s Guide describes the OpenMP Runtime 2.1 for KeyStone and KeyStone II devices. The runtime is
based on the GCC OpenMP runtime (libgomp) and takes advantage of hardware features available on Key-
Stone SoCs to implement OpenMP constructs with low overheads (e.g. Hardware Queues, Semaphores).

1.1 Devices Supported
¢ KeyStone (TMS320C6678, TMS320C6670, and TMS320C6657)
* KeyStone II (66AK2H)

00 Note: The OpenMP runtime libraries are available in little-endian mode only.

1.2 Modes of Operation

The runtime supports two modes of operation on KeyStone and KeyStone II - bare-metal mode and RTSC
mode. The bare-metal mode is the default. Both modes are described in the table below.

Table 1: Comparison of bare-metal and RTSC modes

Bare-metal mode RTSC mode

When is it applica-
ble?

The application using OpenMP does
not require any RTSC components

The application uses other RTSC com-
ponents (e.g. EDMA LLD)

Configuration Via __TI.omp_reset and __TI.omp_con- | Via OpenMP module parameters
figure function
Startup Custom boot routine (rts6000/boot.c) | XDC runtime reset and startup hooks

Dynamic memory
management

Heap mapped to ".sysmem’ section

IPC/SharedRegion/HeapMemMP

Dependencies on
RTSC modules

None

BIOS and IPC

On heterogenous devices such as 66 AK2H, the OpenMP runtime supports a third mode: OpenCL mode.
For details on this mode, refer Section 5]

1.3 Software Architecture

Figure (1| describes the software architecture of the runtime in bare-metal mode. In this mode, the only
external dependency for the runtime is the PDK for the device.

Copyright ©Texas Instruments 2014

http://www.openmp.org

Technology for Innovators®™ Wi TEXAS INSTRUMENTS

Compiler OpenMP Environment
Directives Library Functions Variables

OpenMP APIs and LIBGOMP APIs

Libgomp TI Implementation of
(with Tl modifications) some GOMP APIs

Figure 1: Software architecture (Bare-Metal)

2 Building an OpenMP Application

This section describes the steps for building OpenMP applications for suppoted devices. Section 2.1 dis-
cusses additional software components that are required for building OpenMP applications. Sections
and 2.3 describe building OpenMP applications within CCS and using makefiles.

0 Note: Running OpenMP applications on similators is not supported at this time.

2.1 Build Prerequisites

TMS320C6000 Optimizing Compiler v 7.4.2 or greater is required to build OpenMP applications. In ad-
dition, Table [2| lists versions of various software components required with the OpenMP runtime. The
OpenMP runtime has been validated against these versions of the components. The components, except
for the compiler, are bundled in the Muticore Software Development Kit (MCSDK).

2.2 Building Applications Within CCS

CCS and MCSDK installations are required in order to build applications within CCS. For directions on
downloading and installing CCS, see processors.wiki.ti.com/index.php/Download_CCS. Vari-
ous versions of the MCSDK are available at lwww.ti.com/tool/bioslinuxmcsdk. Note that the re-
quired software components listed in Table[2} including the OpenMP runtime, must be discovered as RTSC
products within CCS. Also, the correct compiler version must be discovered in CCS. The following instruc-
tions are based on CCSv5.4.

¢ Create a new RTSC project (Empty RTSC project under Project templates and examples. Refer Figure

2]

Copyright ©Texas Instruments 2014 6

processors.wiki.ti.com/index.php/Download_CCS
www.ti.com/tool/bioslinuxmcsdk

Technology for Innovators” Rip TEXAS INSTRUMENTS

Table 2: RTSC Component Versions
PDK (TMS320C6678) | 2.1.3.7 MCSDK 2.1.3.7

PDK (TMS320C6670) | 2.1.3.7 MCSDK 2.1.3.7

PDK (TMS320C6657) | 2.1.3.7 MCSDK 2.1.3.7

PDK (66AK2H) 3.0.3.15 MCSDK 3.0.3.15

BIOS 6.35.04.50 | MCSDK 3.0.x or download from http://downloads.ti.com/dsps/dsps_
public_sw/sdo_sb/targetcontent/bios/sysbios/index.html

IPC 3.00.04.29 | MCSDK 3.0.x or download from http://downloads.ti.com/dsps/dsps_
public_sw/sdo_sb/targetcontent/ipc/index.html

XDC 3.25.02.70 | MCSDK 3.0.x or download from http://downloads.ti.com/dsps/dsps_
public_sw/sdo_sb/targetcontent/rtsc/index.html

r ~
¥+ New CCS Project ()

CCS Project —R
Create a new CCS Project. ; .E

Project name: openmp_application_userguide

Qutput type: | Executable 'I

Use default location

C\Users\a0132923\openmp_workspace_v5_S\openmp_applici Browse...

Device
Family: 6000 -
Variant: <select or type filker text> + [Generic C66:x Device -

¥ Advanced settings

* Project templates and examples

type filter text Creates an empty RTSC project. -

4 [5] Empty Projects -
[Empty Project

[Empty Project (with main.c)
[Empty Assembly-only Project
['& Empty DSP/BIOS v5.x Project
|'& Empty RTSC Project

Basic Examples Br
=| SYS/BIOS = -

m

0

©) < Back et » Finish

Figure 2: Creating a new RTSC project

- Family: C6000

— Variant: TMS320C66XX, TCI6636K2H (or) C66xx Multicore DSP, TMS320C6678, TMS320C6670,
TMS320C6657

— Set Output Format under Advanced Settings to eabi (ELF)

¢ Add OpenMP runtime to list of RTSC modules. Also add BIOS and IPC if building applications with
RTSC components. Refer Section[3.1]

¢ If building for C6678/C6670/C6657, add the C6678/C6670/C6657 PDK. If building for TCI6636, add
the KeyStone2 PDK

Copyright ©Texas Instruments 2014 7

http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/bios/sysbios/index.html
http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/bios/sysbios/index.html
http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ipc/index.html
http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ipc/index.html
http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/rtsc/index.html
http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/rtsc/index.html

Technology for Innovators” Rip TEXAS INSTRUMENTS

¢ Target: ti.targets.elf.C66

Platform:

- C6678: ti.runtime.openmp.platforms.evm6678

— C6670: ti.runtime.openmp.platforms.evm6670

— C6657: ti.runtime.openmp.platforms.evm6657
— TMS320TCI6636: ti.runtime.openmp.platforms.evmTCI6636K2H

ority order)

Build the application

Build Profile: release or debug
Enable the —openmp compiler option (under Advanced options — Advanced Optimizations)

Enable the —priority linker option (under C6000 Linker — File Search Path — Search libraries in pri-

Add the source files (e.g. packages/examples/hello/omp_hello.c)
Add a configuration file (packages/examples/hello/omp_config.cfg)

Connect to the DSP Cores

— Creating a group with all 8 DSP cores makes it easier to connect to all cores

- C6678/C6670/C6657: After connecting, run the Global_Default_Setup script on Core 0 to initial-
ize the device (Select Core 0 in the Group, then Scripts — EVM6678L Init Function — Global_De-

fault_Setup)

[0 Note: Target-specific GEL files must be loaded in order for any scripts to be displayed in the
Scripts menu. See processors.wiki.ti.com/index.php/Creating_Custom _Target_
Configurations|for more information on specifying a startup GEL file.

e Load on all cores

O Note: Disable Run to symbol in debug configuration for all cores (Software breakpoints used to
enable this functionality can cause instability when they are set in code shared across cores). Refer

Figure 3}

Device [Texas Instruments X052:0c USE Emulator_0/Co60 0 v]

Program/Memaory Load Options
Aute Run and Launch Optigns
Misc/Other Options

e Run

Realtime Opticns
[] Halt the target before any debugger access (will impact servicing of interrupts)
[7] Enable realtime mode (critical interrupts serviced when halted, rude/polite mode...)

Enable polite mode (respect HPI, DBGM and FRAMEID)

Auto Run Options
Run te symbal main

[710n a program load or restart
[0n a reset

7

Figure 3: Disable run to symbol “main”

Copyright ©Texas Instruments 2014 8

processors.wiki.ti.com/index.php/Creating_Custom_Target_Configurations
processors.wiki.ti.com/index.php/Creating_Custom_Target_Configurations

Technology for Innovators” Rip TEXAS INSTRUMENTS

2.3 Building Applications Using Makefiles

It is possible to build OpenMP applications outside of CCS using Makefiles. An example is located at
packages/examples/hello_with_make. This example uses 2 Makefiles:
Makefile.libomp

¢ Used for RTSC build. This build takes a configuration file (e.g. packages/examples/hello_with_make
/omp_config.cfg) and platform file (e.g. ti.runtime.openmp.platforms.evm6678) as input and gener-
ates a compiler options file (omp_config/compiler.opt) and linker command file (omp_config/linker.cmd).

* Set BUILD_TYPE to release or debug to include the appropriate OpenMP runtime libraries
e Set the following environment variables to the locations of corresponding components:

- OMP_DIR

C6678 _PDK_DIR/C6670_PDK_DIR /C6657 _PDK_DIR /C6636_PDK_DIR based on the device
XDC_DIR

XDCCGROOT (path to C6000 compiler tools)

BIOS_DIR and IPC_DIR (if in BIOS mode)

Makefile

¢ Used to build the OpenMP application. Includes Makefile.libomp and adds the appropriate depen-
dencies to run the RTSC build before building the application.

* Set OMP_TARGET to one of C6678, C6670, C6657 or C6636

¢ Set USE_BIOS to 1 if application uses BIOS or other RTSC modules, 0 otherwise
omp_config.cfg

* A sample RTSC mode configuration file. Refer Section 3| for details.
omp_config_bm.cfg

* A sample bare-metal mode configuration file. Refer Section 3| for details.
omp_config_api.c

* A sample implementation of the configuration APIs. Refer Section[3]for details.

3 Configuring the Runtime

Section (3.1 describes how to configure the runtime and integrate it into applications that use RTSC com-
ponents such as BIOS. Section does the same for bare-metal applications that do not use any RTSC
components.

3.1 RTSC mode Configuration

RTSC mode is enabled by setting usingRtsc to true in the application configuration file. In this mode, the
OpenMP runtime uses a boot routine supplied by XDC.

Listing 1: Configuring the OpenMP runtime mode

var ompSettings = xdc.useModule("ti.runtime.openmp.Settings");
ompSettings.usingRtsc = true;

Copyright ©Texas Instruments 2014 9

Technology for Innovators” Rip TEXAS INSTRUMENTS

O Note: Unlike OpenMP Runtime 1.x, this runtime does not invoke main() in the context of a BIOS Task
nor does it start the BIOS scheduler via BIOS start().

The OpenMP module provides various parameters that are used to configure the runtime. These pa-
rameters are described in the sections below.

3.1.1 Configuring Cores

Listing 2] configures the index of the master core and the number of cores available to the runtime. The set
of cores must be contiguous and can be smaller than the number of cores available on the device. E.g. Cores
0-3, Cores 1-6 etc.

Listing 2: Configuring Cores

var OpenMP = xdc.useModule('ti.runtime.ompbios.OpenMP');
OpenMP .masterCoreldx = 0;
OpenMP . numCores = §;

3.1.2 Configuring Memory Regions

The OpenMP runtime needs to know the memory ranges corresponding to the various memory regions
described in the platform file (Section[3.3). It uses this information to set the appropriate caching attributes
for the regions.

Listing 3: Configuring Memory Regions

// Pull in memory ranges described in Platform.xdc to configure the runtime
var ddr3 = Program.cpu.memoryMap["DDR3"];

var msmc Program.cpu.memoryMap["MSMCSRAM" |;
Program.cpu.memoryMap["OMP_MSMC_NC_VIRT"];

var msmcNcPhy = Program.cpu.memoryMap|["OMP_MSMC_NC_PHY"];

var msmcNcVirt

// Initialize the runtime with memory range information
OpenMP .msmcBase = msmc.base;
OpenMP .msmcSize = msmc.len;

OpenMP .msmcNoCacheVirtualBase = msmcNcVirt.base;
OpenMP .msmcNoCacheVirtualSize = msmcNcVirt.len;

OpenMP .msmcNoCachePhysicalBase = msmcNcPhy.base;

OpenMP .ddrBase
OpenMP .ddrSize

ddr3.base;
ddr3.1len;

3.1.3 Configuring the Heap

In RTSC mode, the OpenMP runtime uses the HeapOMP module to configure and initialize heap memory.
This module handles memory allocation requests:

¢ From BIOS components
¢ From malloc and memalign

HeapOMP maintains a core local heap (HeapMem) and a shared heap (HeapMemMP). The core local
heap is used to satisfy memory allocation requests before the shared heap is intialized and available. The
shared heap is implemented via a heap in a Shared Region that is created during IPC startup.

Copyright ©Texas Instruments 2014 10

© ® N o U e @ N =

Technology for Innovators” Rip TEXAS INSTRUMENTS

Listing 4: Configuring the Heap

var HeapOMP = xdc.useModule('ti.runtime.ompbios.HeapOMP"');

// Shared Region 0 must be initialized for IPC
var sharedRegionId = 0;

// Size of the core local heap
var localHeapSize = 0x8000;

// Size of the heap shared by all the cores
var sharedHeapSize = 0x8000000;

// Initialize a Shared Region & create a heap in the DDR3 memory region
var SharedRegion = xdc.useModule('ti.sdo.ipc.SharedRegion');
SharedRegion.setEntryMeta(sharedRegionId,
{ Dbase: ddr3.base,

len: sharedHeapSize,

ownerProcId: 0,

cacheEnable: true,

createHeap: true,

isvalid: true,

name: "DDR3_SRO",

1)

// Configure and setup HeapOMP
HeapOMP.configure(sharedRegionId, localHeapSize);

3.1.4 Configuring Reset and Startup functions

__TI.omp_reset_rtsc_.mode The reset function sets up memory attributes for the various regions specified
in the platform file using corresponding parameters (Section [3.1.2) from the OpenMP module. The reset
function is invoked via the XDC Reset hook:

Listing 5: Configuring Reset function

var Reset = xdc.useModule('xdc.runtime.Reset');
Reset.fxns.$add('s__ TI omp_reset_rtsc_mode');

__TI_omp_initialize_rtsc_.mode This function configures the runtime and initializes QMSS hardware
queues required by the runtime. It also starts the runtime on worker cores. This function is invoked via the
XDC Startup hook mechanism (xdc.runtime.Startup).

Listing 6: Configuring Startup function

// --Tl_omp_initialize_rtsc_.mode configures the runtime and calls main
var Startup = xdc.useModule('xdc.runtime.Startup');
Startup.lastFxns.S$add('s__TI_omp_initialize_rtsc_mode');

This function is added in the application configuration file to give the programmer flexibility to order
Startup.lastFxns appropriately. For example, if the application is initializing QMSS, the call to initialize
QMSS must be added to lastFxns before __TI_omp_initialize_rtsc_mode is added.

3.2 Bare-metal Mode Configuration

This is the default mode (ti.runtime.openmp.Settings.useRtsc is false).

Copyright ©Texas Instruments 2014 11

© ® N G A W N =

Technology for Innovators” Rip TEXAS INSTRUMENTS

The OpenMP runtime requires certain parameters to be initialized before the program starts (i.e. reaches
main). The runtime provides callback functions that are invoked during boot (_c_int00). Default implemen-
tations of these functions are available in packages/ti/runtime/openmp/src/tomp_config.c. Typically, the
programmer will use the __TI_omp_reset and __TI_omp_configure functions in tomp_config.c as a template
and modify them if required by their configuration.

3.21 __TI_omp_reset

The default implementation is located in packages/ti/runtime/openmp/src/tomp_config.c. The memory
addresses used in the default version of __TI_omp_reset correspond to memory regions defined in the plat-
form file (ti.runtime.openmp.platforms.evm6678). If the user modifies the Platform file or provides their
own, __TI_omp_reset must be updated to correspond to the new memory ranges. This function is called
from _c_int00 (packages/ti/runtime/rts6000/boot.c) before C initialization occurs and is used to:

e Set L1 and L2 cache sizes (Lines 22, 23, 24)
* Make a region of MSMC SRAM non-cacheable using MPAX and disabling caching (Lines 37, 38, 39)

¢ Enabling caching for MSMC and DDR regions (Lines 42, 43)

Listing 7: Default reset function, __TI_omp_reset

/>('>(-

+ Default reset routine. Invoked by all cores during boot, before cinit.

+ Invoked before C initialization is performed — C init run addresses

+ can be in regions mapped by MPAX.

+ Annotated weak, can be overridden by a definition in application source
+ @see c_int00

+ Typically performs the following operations:

+ — Sets up caches
+ — Initializes the MPAX registers for mapping memory regions
+ — Initializes the MAR registers to set attributes for memory regions

+ NOIE: The addresses and sizes used here must correspond to those specified

+ in the Platform or linker command file'!

*/

#pragma WEAK(__TI_omp_reset)

#pragma CODESECTION(._TI_omp_reset, ".text:omp:reset™)

void __ TI_omp_reset(void)

{
/+ Configure caches =/
CACHE_setL1DSize(CACHE_L1_32KCACHE);
CACHE_setL1PSize(CACHE_L1_32KCACHE);
CACHE_setL2Size(CACHE_128KCACHE) ;

/+ OMP runtime requires a portion of MSMCSRAM to be non—cached. Since it is
+ not possible to disable caching in the MSMCSRAM address range, we need a
+ 2 step process:

+ 1. Map a portion of MSMCSRAM into a range that can be marked as

* non—cached. This is done using the MPAX register

+ 2. Annotate the mapped section as non—cached using the appropriate
* MAR register for that memory range

+ All accesses to MSM(SRAM through the mapped address range will not
+ be cached.

*/

Copyright ©Texas Instruments 2014 12

36
37
38
39
40
41
42
43
44
45

Technology for Innovators” Rip TEXAS INSTRUMENTS

/% 0x10 => 128K, 0x13 => 1IMB =/
__TI_setMPAX(3, MSMCSRAM_NC_START_ADDR,

MSMCSRAM_START_ADDR, 0x10 /x 128 KB =/);
__TI_omp_disable_caching(MSMCSRAM_NC_START_ADDR, MSMCSRAM_NC_SIZE);

/+ Annotate MSMCSRAM and DDR as cached + prefetch + write through =/
__TI_omp_enable_caching(MSMCSRAM_START_ADDR, MSMCSRAM_SIZE);
__TI_omp_enable_caching(DDR_START_ADDR, DDR_SIZE);

O Note: Any shared memory used by the application must be annotated write-through. The OpenMP
runtime relies on write-through for correctness.

3.2.2 __TI.omp_configure

This function is called from _c_int00 (packages/ti/runtime/rts6000/boot.c) before the OpenMP runtime is
initialized. The following configuration functions must be called from within __TI_omp_configure:

__TI_.omp_config_cores Configure number of cores available to OpenMP runtime and the index of the
master core.

In the example above, the runtime is configured to use cores 0, 1, 2 and 3 with 0 being the master core.

__TI_.omp_config_clock_freq-in_mhz Specify the operating frequency of the cores in MHz. Core clock
frequency information is used by the OpenMP runtime timing functions, omp_get_wtime() and omp_get_-
wtick().

__TI_omp_config_thread_stack The OpenMP configuration file provided with the examples (packages/ex-
amples/hello/omp_config.cfg) places the OpenMP thread stacks in LZSRAM and sizes the stack at 128KB.
L2SRAM usage can be reduced by allocating the OpenMP thread stacks from the heap and sizing the stacks
in L2SRAM to, say, 8KB. For example, the snippet of code allocates 0x400000 bytes of memory from the
heap (using malloc) for each thread.

__TI_.omp_config_hw_semaphores Specify the set of hardware semaphores available to the runtime.
When the OpenMP runtime is used along with IPC, must ensure that the semaphores used by IPC do
not conflict with those of the OpenMP runtime.

__TI_.omp_config_hw_queues Most users will not have to change hardware queue settings. This API is
mainly for internal use.

Listing 8: Default configuration function, -_TI_omp_configure

/3('>('
+ Default OpenMP Runtime configuration function.

+ The OpenMP runtime requires the following hardware resources:

* — The set of cores (contiguous) that run the OpenMP runtime
+ — Hardware Semaphores (6)

+ — QMSS general purpose hardware queues (11)

+ — QMSS memory region (1)

+ The configuration function specifies the hardware resources that can be
+ used by the runtime.

+ It is annotated weak and can be overridden by a user provided function
* with the same name.
+ @see __TI_omp_config_thread_stack
+/
#pragma CODESECTION(__TI_omp_configure, ".text:omp:configure™)
#pragma WEAK(__TI_omp_configure)
void __ TI_omp_configure(void)

Copyright ©Texas Instruments 2014 13

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Technology for Innovators” Rip TEXAS INSTRUMENTS

__TI_omp_config_cores (OMP_MASTER_CORE_IDX, OMP_NUM_CORES);
__TI_omp_config_hw_semaphores(/+hw_sem _base_idx=+/3);
__TI_omp_config_clock_freqg_in_mhz(CLOCK_RATE);

/+ The OpenMP runtime requires 11 hardware queues and uses the QMSS LLD
+ APIs to initialize these queues.
* QMSS_PARAM NOT_SPECIFIED
* QMSS LLD allocates queue numbers during call to Qmss_queueOpen
+ Qmss_MemRegion. MEMORY _REGION_NOT_SPECIFIED
* QMSS LLD allocates memory region used by Qmss_insertMemoryRegion
*/
#ifdef TI_C6636
__TI_omp_config_hw_gueues (/% init_qmss=x/ 1,
/+ hw_queue_base_idx=+/ 7332,
/+ first_desc_idx_in_linking_ram=+/ 8000,
/+ first_memory_region_idx=x*/ 32);
#else
__TI_omp_config_hw_queues (/# init_.qmss =/ 1,
OMSS_PARAM_NOT_SPECIFIED,
/+ first_desc.idx_in_linking_ram=+/0,
Omss_MemRegion_ MEMORY_REGION_NOT_SPECIFIED);
#endif

/+ Thread stacks in core local memory =/
__TI_omp_config_thread_stack(0, 0);
//-_Tl_.omp_config_thread_stack (1, 0x400000);

3.3 Platform file

A RTSC platform provides information about device memory, peripherals, clock speed and external off-
chip memory.

3.3.1 Device Name

The supplied RTSC application configuration files rely on the device name to configure the number of cores
used by the OpenMP runtime correctly. Device names are obtained from the platform file and should match
the desired target.

3.3.2 CPU Clock Frequency

The OpenMP runtime timing functions, omp_get_wtime() and omp_get_wtick(), require information about
the operating frequency of the CPUs (in MHz). In RTSC mode, the CPU clock frequency is obtained from
the platform file. Therefore, users must ensure that the CPU clock frequency specified in the platform file
is correct.

3.3.3 Memory Regions

Default sizes for level 1 program cache, level 1 data cache and level 2 cache are obtained from the platform
file.
Platform files used with the OpenMP runtime must define the following memory regions:

Copyright ©Texas Instruments 2014 14

© ® N o @ ok W N =

e
= o k = o

15

Technology for Innovators” Rip TEXAS INSTRUMENTS

L2SRAM Level 2 SRAM local to each core configured as scratch. At least 64K of L2 must be configured
as scratch to hold core-specific runtime variables. If the application stack is placed in L2SRAM, it must be

sized taking application stack requirements into account.

OMP_MSMC_NC_VIRT This region is mapped to shared on-chip memory (MSMC SRAM) and caching
is disabled using the MAR registers corresponding to the memory region. The OpenMP runtime requires

128KB of MSMC SRAM to be non-cached to store internal data structures.

Since the MAR register corresponding to MSMC address range does not permit caching to be disabled,
an MPAX register is used to map a portion of MSMCSRAM (in this case, 128KB) into an unused address
space (0xa0000000 on the C6678 EVM) and the MAR register corresponding to 0xa0000000 is used to disable

caching.

OMP_MSMC_NC_PHY An MPAX register is used to map the region specified by OMP_MSMC_NC_-

VIRT to physical memory specified by OMP_MSMC_NC_PHY.
MSMCSRAM Shared on-chip memory. Can be used for code, data or heap

DDR3 Shared off-chip memory. Used to hold Thread Local Storage (TLS) initialization sections. Can

also be used for code, shared data or the heap.
A sample C6678 Platform file is shown in the listing below.

Listing 9: Sample C6678 Platform file

metaonly module Platform inherits xdc.platform.IPlatform {

config ti.platforms.generic.Platform.Instance CPU =
ti.platforms.generic.Platform.create("CPU", {

clockRate: 1000,
catalogName: "ti.catalog.c6000",
deviceName: "TMS320C6678",
customMemoryMap: [
["L2SRAM",
{name: "L2SRAM", base: 0x00800000,

len: 0x00060000, access: "RW"}],
["OMPiMSMciNC7VIRT",
{name: "OMP_MSMC_NC_VIRT", base: 0xA0000000,
len: 0x00020000, access: "RW"}],
["OMP_MSMC_NC_PHY",
{name: "OMP_MSMC_NC_PHY", base: 0x0C000000,
len: 0x00020000, access: "RW"}],
["MSMCSRAM" ,
{name: "MSMCSRAM", base: 0x0C020000,
len: 0x003E0000, access: "RWX"}],
["DDR3",
{name: "DDR3", base: 0x80000000,
len: 0x20000000, access: "RWx"}],
1,
12Mode:"128k",
11PMode:"32k",
11DMode: "32k",

});

instance :
override config string codeMemory = "MSMCSRAM",
override config string dataMemory = "DDR3";
override config string stackMemory = "L2SRAM";

The OpenMP runtime supplies platform files for the various devices it supports in the ti.runtime.openmp.platforms

directory.

Copyright ©Texas Instruments 2014

15

Technology for Innovators” Rip TEXAS INSTRUMENTS

[0 Note: The addresses in the platform file must be consistent with those specified in the configura-
tion API in Section The linker command file template in the OpenMP runtime (ti/runtime/open-
mp/linkemd.xdt) contains references to memory regions defined in the platform file with the following
names: L2SRAM, DDR, OMP_MSMC_NC_VIRT and OMP_MSMC_NC_PHY. Consequently any platform
file used with the OpenMP runtime must contain these regions. Alternatively, the linkemd.xdst file can be
modified to refer to the changed names.

4 Integrating Applications Using QMSS

OpenMP runtime uses Queue Manager Subsystem (QMSS) and initializes it by default. If applications use
QMSS outside of OpenMP (e.g. to run the networking stack on one of the DSP cores using the NDK), the
initialization must be performed by the application because the runtime is not aware of QMSS memory
regions used by the application.

* Set openmp.Settings.runtimelnitializesQmss to false
¢ Configure QMSS related parameters in the openmp module:

- gqmssMemRegionIndex

— qmssFirstDescldxInLinkingRam
Refer for details on these parameters.

0 Note: The application function that performs QMSS initialization (calls Qmss_init) must be added to
Startup.lastFxns before __TI_omp_initialize_rtsc_mode.

On KeyStone devices (TMS3206657, TMS320C6670 and TMS3206678), memory regions must be added
in increasing order of memory addresses. The openmp module configuration parameters qmssMemRe-
gionIndex and gmssFirstDescldxInLinkingRam can be used to enforce this restriction. Refer QMSS LLD
API for details.

5 OpenCL Mode

In addition to the bare-metal and RTSC modes of operation, the OpenMP runtime also supports an OpenCL
mode. OpenCL is an industry standard for programming heterogeneous computing systems. The OpenMP
runtime’s OpenCL mode allows OpenMP C programs to be dispatched using OpenCL APIs, and is only
available on 66AK2H. This execution mode is a Texas Instruments-specific extension to OpenCL. In this
mode, the OpenMP runtime is embedded in the OpenCL monitor that runs on the DSP cores. Texas In-
strument’s OpenCL implementation, OpenCL v1.0, currently implements version 1.1 of the OpenCL spec-
ification. More information about OpenCL is available at khronos.org/opencl. For details on Texas
Instrument’s OpenCL v1.0, see the OpenCL User’s Guide in the OpenCL package.

5.1 Dispatching OpenMP with OpenCL

An OpenCL program usually consists of a host program that executes on the host, and kernels that execute
on OpenCL devices. In the OpenCL mode, a kernel acts as a wrapper that invokes another function which
contains OpenMP regions. These three components — the OpenCL host program, the OpenCL kernel, and
the OpenMP region — form the main parts of an OpenCL program capable of dispatching OpenMP regions.

The example in Figure El provides an overview of dispatching OpenMP regions with OpenCL APIs.
The OpenCL runtime manages the execution of the OpenCL host program on the host, which is a quad-
core ARM Cortex-A15 in this example. The embedded OpenMP runtime along with the OpenCL runtime

Copyright ©Texas Instruments 2014 16

khronos.org/opencl

Technology for Innovators” Rip TEXAS INSTRUMENTS

manages the execution of the OpenCL kernel and OpenMP region on the device. In this example, the device
is a DSP with 8 C66x cores. More example programs are included in the OpenCL package.

OpenCL kernel (wrapper)

OpenCL host program __kernel

void add_wrapper(__global const float *a,
program.build(devices, “add_openmp.obj”); __global const float *b,
Kernel kernel(program, “add_wrapper"); __global fleat *c,
kernel.setArg (@, bufA); int size)
kernel.setArg(1l, bufB):
kernel.setArg(2, bufDst); add_openmp(a, b, ¢, size);
kernel.setArg(3, NumElements); }

Event evl,ev2,ev3,evd, ev5, ev6,ev/,evs;

CommandQueue In0_Q(context, devices[d], CL_QUEUE_PROFILING_ENABLE); void add_openmp(float *a,
float *b,

In0_Q.enqueuelriteBuffer(bufA, CL_FALSE, @, bufsize, srcA, NULL, &evl): float *c,
In0_Q.enqueuelriteBuffer(bufB, CL_FALSE, @, bufsize, srcB, NULL, &ev2); int size) OpenMP

{ .
std: :vector<Event> vec_evs(1); int i; region
In0_Q.enqueueTask(kernel, NULL, &vec_ev5[@]); #pragma omp parallel for

for (1 =8; 1 < size; i++)

In0_Q.enqueueReadBuffer(bufDst, CL_TRUE, @, bufsize, dst, &vec_evs, &ev6); c[i] = a[i] + b[i];

b

[OpenCL Runtime]
OpenCL+ OpenMP
i Runtime
SMP Linux

ARM 'ARM ' ARM ' ARM
CA15 A1 A1 AT

MSMC 6MB

Figure 4: Dispatching OpenMP regions with OpenCL APlIs

6 OpenMP 3.0 Implementation-Defined Behaviors

The OpenMP 3.0 specification identifies some features as implementation defined. The following docu-
ments the behaviour of the runtime with respect to implementation-defined features.

* Nested Parallelism: Only one level of parallelism is supported. Nested parallel regions will be exe-
cuted by teams comprising only one thread.

¢ Task Scheduling Points in Untied Tasks: Only tied tasks are currently supported and untied tasks are
treated as tied tasks. Therefore, task scheduling points in untied task regions occur at the same points
as in tied task regions.

¢ Memory Model: Memory accesses by multiple threads to the same variable without synchronization
may not be atomic with respect to each other.

* Dynamic adjustment of threads: Dynamic adjustment of the number of threads is not supported.
When a thread encounters a parallel construct, the number of threads delivered by this implementa-
tion is determined according to Algorithm 2.1 in the OpenMP 3.0 Specification. When more threads
are requested than are available, the available threads are supplied.

Copyright ©Texas Instruments 2014 17

Technology for Innovators” Rip TEXAS INSTRUMENTS

¢ Loop directive: The effect of schedule (runtime) clause when the run-sched-var ICV is set to auto
is static with no chunk size.

e Constructs

- sections construct: The structured blocks in a sections construct are assigned to the mem-
bers of the team executing the sections region, such that the threads execute an approximately
equal number of sections.

— single construct: The first thread that encounters a single construct executes its structured
block.

¢ Runtime library routines

— omp_set_num_theads: If the argument is not a positive integer, then the call is ignored.
- omp_set_schedule: Only valid OpenMP schedule kinds are accepted.

- omp_set_max_active_levels: When called from within an explicit parallel region, the binding
thread set is all threads. However, since nested parallelism is not supported, this implemen-
tation has little use for this function. If the argument is a negative integer or a positive integer
greater than one, then the call is ignored.

- omp-_get_max_active_levels: This routine may be called anywhere in the program. It always
returns the value of the gomp_max_active_levels_var internal control variable.

7 Migration Guide

7.1 Key Differences between OpenMP Runtime 1.x and 2.x

In bare-metal mode, OpenMP runtime 2.x:

¢ Does not require BIOS/IPC components.
* Does not require the RTSC build tool (xdc) to build OpenMP applications.

e Is configured via API functions __TI_.omp_reset and __TI_.omp_configure instead of parameters in a
RTSC OpenMP module.

In RTSC mode, OpenMP runtime 2.x is configured by setting parameters in the OpenMP RTSC module.
Refer to the sample application configuration file for details.

7.2 Porting an OpenMP Runtime 1.x Application to 2.x
1. Switch to a platform file (Platform.xdc) supplied with 2.x

2. Use the provided example application configuration file as a starting point to port OpenMP runtime
1.x configuration to corresponding 2.x parameters.

3. If you are modifying the memory ranges specified in Platform.xdc:

RTSC mode: update OpenMP module parameters in the application configuration file to correspond
to the new Platform file.

Bare-metal mode: Write your own __TI_omp_reset function by using the one supplied in tomp_config.c
as a template.

4. OpenMP Runtime 1.x invokes the application main function as a BIOS Task and calls BIOS_start before
main. OpenMP runtime 2.x does not call main in the context of a BIOS Task. If the application uses
Tasks, it must call BIOS_ start().

Copyright ©Texas Instruments 2014 18

Technology for Innovators”

8 Resource Usage

W3 TEXAS INSTRUMENTS

Table3|lists resource usage of the runtime with the default configuration.

Table 3: Resource Usage

Resource Description OMP runtime usage on C6678

L1pP Level 1 Program cache Configured as cache (32KB)

L1D Level 1 Data cache Configured as cache (32KB)

L2 (cache) Level 2 Cache 128K configured as cache in __TI_omp_reset

L2 (memory) Level 2 Scratch Default configuration uses 131KB as scratch
in bare-metal mode. Out of this, 128KB
is stack (configured via program.stack). In
RTSC mode, 171KB is used as scratch. 32KB
is used for the core local heap(configured via
localHeapSize) and 128KB is stack.

MSMCSRAM Cached On-chip shared memory | Not used by the runtime. Application can

use for code/data. Must be marked write-
through (Refer __TI_omp_reset)

MSCMSRAM Non-cached

On-chip shared memory

128KB must be non-cached using a combina-
tion of MPAX and MAR registers. (Refer __-
TI_omp_reset)

DDR

Off-chip shared memory

Application heap is mapped to DDR in omp_-
config.cfg. The size of the heap if controlled
by program.heap and the section it is mapped
to depends on the mapping of section .sys-
mem. Any DDR regions annotated cached by
the application must also be annotated write-
through (see __TI_omp_reset)

Hardware Semaphores

Semaphore module

6 semaphores, starting at hwSemBaseldx

Hardware Queues

QMSS General purpose
queues

11 hardware queues starting at qgmssH-
wQueueBaseldx

Memory Regions

QMSS Memory Regions

1 memory region, specified by qmssMemRe-
gionldx

Copyright ©Texas Instruments 2014

19

Technology for Innovators”

W3 TEXAS INSTRUMENTS

9 Reducing Memory Footprint in L2SRAM

This section details various techniques for reducing L2SRAM usage. The examples shown here make the

assumption that the application requires 64K of stack space per core.

9.1 Stacks in MSMCSRAM

The default configuration places the stack in each core’s L2ZSRAM and sizes them to 128K. A technique for
reducing L2SRAM usage is to place the thread stacks in MSMCSRAM. For example, with 8 cores and 128KB
of stack per core, the trade-off is to use 1IMB of MSMCSRAM for stacks and free up 128KB on each core’s

local L2ZSRAM. Steps:

1.

Update the application configuration file to create the heap in MSMCSRAM
Bare-Metal mode

Update application configuration file to place the heap in MSMCSRAM

program.sectMap[".sysmem"] = new Program.SectionSpec();
program.sectMap|[".sysmem"].loadSegment = "MSMCSRAM";

RTSC mode
Setup shared region 0 on MSCMSRAM instead of DDR3. This will create the heap in MSMCSRAM

1 // 64K per core for stack + 64K for other mallocs

2 var sharedHeapSize = 0x90000;

3

4 var msmcmem = Program.cpu.memoryMap["MSMCSRAM" |;

5

6 // Configure a Shared Region with a heap in MSMC memory region
7 var SharedRegion = xdc.useModule('ti.sdo.ipc.SharedRegion');
8 SharedRegion.setEntryMeta(sharedRegionId,

9 { base: msmcmem.base,

10 len: sharedHeapSize,

1 ownerProcId: 0,

12 cacheEnable: true,

13 createHeap: true,

14 isvalid: true,

15 name: "MSMC_SRO",

16 1

2. Update omp_config.c, -_TI_.omp_configure to allocate thread stacks from the heap Replace

__TI omp_config_thread_stack(0, 0);

With

__TI_omp_config_thread_stack(1l, 0x10000);

3. Reduce program.stack to 4K in the configuration file. This stack is only used by OpenMP runtime

during initialization. The program’s main thread starts execution in the stack configured in steps 1,

2.

Copyright ©Texas Instruments 2014

20

Technology for Innovators” Rip TEXAS INSTRUMENTS

1 program.stack = 0x1000;

O Note: Placing thread stacks in DDR has potential to significantly degrade performance due to register
spills to slow DDR stack within frequently executed loops in the application.

10 Building the Runtime

The OpenMP runtime ships with all the sources required to build the runtime. Use the Makefile provided
in the utils directory after setting the following environment variables: XDCCGROOT, XDC_DIR, C6670_-
PDK_DIR, C6657 PDK_DIR, C6678 PDK_DIR, C6636_PDK_DIR. XDCCGROOT points to an installation of
the C6000 compiler tools, version 7.4.6.

make —f utils/Makefile

The build creates libraries in the following directories:
1. ti/runtime/openmp/lib
2. ti/runtime/argsmain/lib
3. ti/runtime/argsmain/lib
4. ti/runtime/device/lib
5. ti/runtime/ompbios/lib
6. ti/runtime/rts6000/1ib
7. ti/runtime/cio/lib

It will also update the platform files located in ti/runtime/openmp /platforms.

11 Defect Reporting

All OpenMP Runtime 2.x defects should be reported via the TI Compiler forum at the following URL:
http://e2e.ti.com/support/development_tools/compiler/default.aspx

Copyright ©Texas Instruments 2014 21

http://e2e.ti.com/support/development_tools/compiler/default.aspx

Technology for Innovators”

12 Version History

W3 TEXAS INSTRUMENTS

Version | Description Release Date

2.0.0.1 Initial version, bare-metal, C6678 only 05/07/2013

2.0.0.3 | Added RTSC mode - support for including BIOS and other RTSC | 06/13/2013
modules along with OpenMP runtime

2.1.0 Added 66AK2H support. Requires OpenEM 1.3.0.2 06/03/2013

212 Added OpenCL integration - using OpenCL APIs to dispatch | 07/15/2013
OpenMP worksharing programs. Requires OpenEM 1.5.0.1

2.1.6 Removed OpenEM requirement. Added dispatching OpenMP | 10/30/2013
tasking programs with OpenCL

2.1.7 Added support for C6670 and C6657. Requires MCSDK 3.0.3.15 | 11/19/2013
for 66 AK2H and MCSDK 2.1.3.7 (Built after 11/13/2013) for
C6678/C6670/C6657

2.1.8 Beta 1 12/10/2013

219 Beta 2. 12/16/2013
In RTSC mode, the OpenMP runtime did not honor L1/L2 cache
sizes specified in the platform file (Platform.xdc). Fixed.

2110 | GA. 01/17/2014
Data Page (DP) register not set for worker cores when dispatch-
ing OpenMP programs with near data from OpenCL. Fixed

2.1.11 Enabled Debian package creation. No changes to OpenMP run- | 01/28/2014
time functionality.

21.12 Added a section on OpenCL mode to the User’s Guide. No | 02/14/2014
changes to OpenMP runtime functionality.

2.1.13 Fixed issue with runtime timing functions in OpenCL mode. 03/20/2014

2.1.14 Updated internal heap management API for use with the | 04/03/2014
OpenMP accelerator model.

Copyright ©Texas Instruments 2014

22

© ® N o @ ok W N =

G B B R R R OE OB OB B B 2 OE YWY R PR 828R RENERRERERERNZEL SRS RS S
= 3 % % 9 &5 & 58 FE 3 8 2 3 & a kR 38 B E B 2N TR OS82 S S » 9 m R »» OB S

Technology for Innovators®™ Wi TEXAS INSTRUMENTS

13 Appendix

13.1 RTSC Mode Configuration Parameters

The set of parameters available for configuring the OpenMP runtime in RTSC mode are specified in the
OpenMP module.

Listing 10: OpenMP.xdc

+ Copyright (c) 2013, Texas Instruments Incorporated
+ http://waw. ti.com
+ All rights reserved.

+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions
* are met:

+ » Redistributions of source code must retain the above copyright
* notice , this list of conditions and the following disclaimer.

+ % Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.

+ + Neither the name of Texas Instruments Incorporated nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.

+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS 1S”
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,

+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

+ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR

+ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
+ OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

+ WHETHER IN CONIRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

+ OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,

+ EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

+ OpenMP RTSC Configuration Module

+ This module must be used (via xdc.useModule) by all OpenMP RTSC

+ applications. This module is used to setup a configuration for the
+ runtime. The configuration is applied by the functions

+ __Tl.omp_reset_bios_.mode and __TI_omp_start_bios_.mode before main
+ is called.

*/
module OpenMP

Copyright ©Texas Instruments 2014 23

52
53

55
56
57
58
59
60
61
62
63

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

105
106
107
108
109
110
111
112
113

Technology for Innovators®™ Wi TEXAS INSTRUMENTS

/+! Number of participating cores.

*
+ Can be fewer than number of cores available on device.
+/

config Int32 numCores = 8;

/+! Index of the core running the main thread =/
config Int32 masterCoreldx = 0;

/+! Core clock rate as defined in Platform.xdc =/
config Int32 clockFreq = 0;

/+! Base address of MOMC region as defined in Platform.xdc =/
config UInt32 msmcBase = 0;

/+! Size of MSMC region as defined in Platform.xdc =/
config UInt32 msmcSize = 0;

/+! Base address of OMPMSMCNC.VIRT region as defined in Platform.xdc =/
config UInt32 msmcNoCacheVirtualBase = 0;

/+! Size of OMPMSMCNC.VIRT region as defined in Platform.xdc =/
config UInt32 msmcNoCacheVirtualSize = 0;

/+! Base address of OMPMSMCNCPHY region as defined in Platform.xdc */
config UInt32 msmcNoCachePhysicalBase = 0;

/+! Base address of DDR region as defined in Platform.xdc =/
config UInt32 ddrBase = 0;

/+! Size of DDR region as defined in Platform.xdc =/
config UInt32 ddrSize = 0;

/+! MPAX register used for mapping OMPMSMCNC.VIRT addresses to
+ corresponding addresses in the OMPMSMCNCPHY region
*
/
config UInt32 mpaxForMsmcMapping = 3;

/+! Base index of Hardware Semaphore.

*

+ The runtime uses hwSemCount semaphores starting at base index.

+ E.g. if hwSemBaseldx is 3 and hwSemCount is 5, semaphores 3,4,5,6,7
x* are used.

+/

config Int32 hwSemBaseIdx = 3;

/+! Number of Hardware Semaphores

%

* The user must not modify this field. The runtime uses 5 semaphores.
+/

config Int32 hwSemCount = 6;

/x—!

+ @_nodoc

+ Set via openmp.Settings.runtimelnitializesQmss. Do not set
+ directly.

+/

config bool agmssInit = true;

Copyright ©Texas Instruments 2014

24

114
115
116
17
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

135
136
137
138
139
140
141
142
143

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

Technology for Innovators®™ Wi TEXAS INSTRUMENTS

/+! Index of the QMSS memory region

+ Defaults to —1 (Qmss.MemRegion. MEMORY_REGION_NOT_SPECIFIED) .

+ If the application is initializing QMSS and setting up memory regions,
+ it can use gmssMemRegionlndex to indicate the memory region to be used
*/

config Int32 gmssMemRegionIndex = —1;

/+! The first descriptor index used in linking RAM.
*
+ If the application is initializing QMSS, it typically provides an
* index.
*/
config UInt32 gmssFirstDescIdxInLinkingRam = 0;

/+! Base index of QMSS general purpose hardware queue.

*

+ The runtime uses 11 queues starting at this index. When the runtime
+ intializes QMSS, the default of —1 allows the QMSS LLD to pick the

+ queues allocated.
*/
config Int32 gmssHwQueueBaseIdx = —1;
/+! If true, stack for each OpenMP thread is malloc'ed from the heap
*
+ By default, the stacks are placed in L2SRAM.
+/
config bool allocateStackFromHeap = false;
/+! If thread stack is allocated from heap, size of the stack on each
+ core. Defaults to 64K per—core
*/
config Int32 allocateStackFromHeapSize = 0x10000;
/!
* @_nodoc
+ Set number of processors for IPC to use
+/
metaonly Void configurelpc(UIntlé masterCoreldx, UIntl6 numCores);
/!
* @_nodoc
+ Used by HeapOMP to switch to using Shared Region heap for allocation
*/
Bool useSharedHeap();
internal:
struct Module_State {
Bool useSharedHeap;
I
}

13.2 Bare-metal Configuration Functions

The default reset and configuration functions provided with the OpenMP runtime. The addresses for the
memory regions used in these functions corresond to the memory regions defined in Platform.xdc.

Copyright ©Texas Instruments 2014 25

© ® N o U e @ N =

Technology for Innovators®™ Wi TEXAS INSTRUMENTS

Listing 11: tomp_config.c

+ Copyright (c) 2013, Texas Instruments Incorporated — http://www. ti.com/
* All rights reserved.

+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:

* + Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* + Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* + Neither the name of Texas Instruments Incorporated nor the

* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.

+ THIS SOFIWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS 1S”
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE

+ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

+ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

+ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

+ CONIRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

+ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

*

*/
/**
+ \file tomp_config.c

+ \brief Implements default versions of configuration functions

+ Functions implemented:

* __TI_omp_reset
* -_TI_.omp_configure
*/

#include "omp.h"

#include <ti/csl/csl_cache .h>
#include <ti/csl/csl_cacheAux.h>
#include <ti/csl/csl_-msmc.h>
#include <ti/csl/csl.msmcAux.h>
#include <ti/drv/qmss/qmss.qm.h>

extern cregister volatile unsigned int DNUM;

/++ \defgroup omp_config OMP Runtime Configuration Hooks =/

[+ @ +/
#define MSMCSRAM START_ADDR (0x0C000000)
#define MSMCSRAMNCSIZE (0x00020000) /+ 128 KB =/

#if defined (TI-C6678)

#define MSMCSRAM SIZE (0x00400000) /+ 4 MB =/
#define MSMCSRAMNCSTART ADDR (0xA0000000)

#define DDRSTART_-ADDR (0x80000000)

#define DDR SIZE (0x20000000) /% 512 MB =/
#define OMPNUM.CORES (8)

#define CLOCKRATE (1000) /% 1000 Mhz =/

#elif defined (TI_C6670)

Copyright ©Texas Instruments 2014

26

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
17
118
119
120
121
122

Technology for Innovators®™ Wi TEXAS INSTRUMENTS

#define MSMCSRAM . SIZE

#define MSMCSRAM NCSTART-ADDR
#define DDRSTART_ADDR

#define DDR.SIZE

#define OMPNUM.CORES

#define CLOCKRATE

#elif defined (TI_C6657)
#define MSMCSRAM SIZE

#define MSMCSRAM NCSTART_-ADDR
#define DDRSTART_ADDR

#define DDR_SIZE

#define OMPNUM.CORES

#define CLOCKRATE

#elif defined (TI_C6636)
#define MSMCSRAM SIZE

#define MSMCSRAM NC START_ADDR
#define DDRSTART_ADDR

#define DDR.SIZE

#define OMPNUM.CORES

#define CLOCKRATE

#else

#error "Device not supported"
#endif

#define OMP_MASTER COREIDX (0)

/>(->(-

(0x00200000)
(0xA0000000)
(0x80000000)
(0x20000000)
(4)

(983)

(0x00100000)
(0xA0000000)
(0x80000000)
(0x20000000)
(2)

(1000)

(0x00600000)
(0xE0000000)
(0xA0000000)
(0x20000000)
(8)

(1000)

/*

/*

/*

/*

/*

/*

/*

2 MB =/

512 MB =/

983 Mhz =/

1 MB +/

512 MB =/

1000 Mhz =/

6 MB =/

512 MB =/

1000 Mhz =/

+ Default reset routine. Invoked by all cores during boot, before cinit.

+ Invoked before C initialization is performed — C init run addresses
+ can be in regions mapped by MPAX.
+ Annotated weak, can be overridden by a definition in application source

* @see c_int00

+ Typically performs the following operations:

+ — Sets up caches
+ — Initializes the MPAX registers for mapping memory regions
+ — Initializes the MAR registers to set attributes for memory regions

+ NOIE: The addresses and sizes used here must correspond to those specified
+ in the Platform or linker command file'!

+/
#pragma WEAK(__TI_omp_reset)

#pragma CODESECTION(._-TI_omp_reset, ".text:omp:reset™)

void __ TI_omp_reset(void)

{

/+ Configure caches =/

CACHE_setL1DSize(CACHE_L1_32KCACHE);
CACHE_setL1PSize(CACHE_L1_32KCACHE);
CACHE_setL2Size(CACHE_128KCACHE) ;

/+ OMP runtime requires a portion of MSMCSRAM to be non—cached. Since it is

+ not possible to disable caching in the MSM(SRAM address range, we need a

+ 2 step process:

+ 1. Map a portion of MSMCSRAM into a range that can be marked as
* non—cached. This is done using the MPAX register
+ 2. Annotate the mapped section as non—cached using the appropriate

* MAR register for that memory range

+ All accesses to MSMCSRAM through the mapped address range will not

+ be cached.

+/

/* 0x10 => 128K, 0x13 => 1IMB =/

Copyright ©Texas Instruments 2014

27

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

155
156
157
158
159
160
161
162
163

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

Technology for Innovators®™ Wi TEXAS INSTRUMENTS

__TI_setMPAX(3, MSMCSRAM_NC_START_ADDR,
MSMCSRAM_START_ADDR, 0x10 /% 128 KB +/);
__TI_omp_disable_caching(MSMCSRAM_NC_START_ADDR, MSMCSRAM_NC_SIZE);

/+ Annotate MSMCSRAM and DDR as cached + prefetch + write through =/

__TI_omp_enable_caching(MSMCSRAM_START_ADDR, MSMCSRAM_SIZE);
__TI_omp_enable_caching(DDR_START_ADDR, DDR_SIZE);

+ Default OpenMP Runtime configuration function.

+ The OpenMP runtime requires the following hardware resources:

+ — The set of cores (contiguous) that run the OpenMP runtime
* — Hardware Semaphores (6)

+ — QMSS general purpose hardware queues (11)

+ — QMSS memory region (1)

+ The configuration function specifies the hardware resources that can be
+ used by the runtime.

+ It is annotated weak and can be overridden by a user provided function
+ with the same name.
+ @see __Tl_omp_config_thread_stack
*/
#pragma CODESECTION(_.TI_omp_configure, ".text:omp:configure")
#pragma WEAK(__TI_omp_configure)
void _ TI_omp_configure(void)
{

__TI_omp_config_cores (OMP_MASTER_CORE_IDX, OMP_NUM_CORES);
__TI_omp_config_hw_semaphores(/+*hw_sem_base_idx=+/3);
__TI_omp_config_clock_freq in_mhz(CLOCK_RATE);

/+ The OpenMP runtime requires 11 hardware queues and uses the QMSS LLD
+ APIs to initialize these queues.
+ QMSS_PARAM_NOT_SPECIFIED
* QMSS LLD allocates queue numbers during call to Qmss_queueOpen
+ Qmss_MemRegion. MEMORY _REGION_NOT_SPECIFIED
* QMSS LLD allocates memory region used by Qmss_insertMemoryRegion
*/
#ifdef TI_C6636
__TI_omp_config_hw_queues (/# init_qmss=+/ 1,
/+ hw_queue_base_idx=*/ 7332,
/+ first_desc_idx_in_linking_ram=+/ 8000,
/+ first_memory._region_idx=+/ 32);
#else
__TI_omp_config_hw_gqueues (/# init_.qmss =/ 1,
QMSS_PARAM_NOT_SPECIFIED,
/+ first_desc_idx_in_linking_ram=+/0,
QOmss_MemRegion_MEMORY_REGION_NOT_SPECIFIED);
#endif

/+ Thread stacks in core local memory =/
__TI_omp_config_thread_stack(0, 0);
//-_Tl_omp_config_thread_stack (1, 0x400000);

}
[+ @} +/

Copyright ©Texas Instruments 2014

28

Technology for Innovators”

W3 TEXAS INSTRUMENTS

Copyright ©Texas Instruments 2014

29

	Overview
	Devices Supported
	Modes of Operation
	Software Architecture

	Building an OpenMP Application
	Build Prerequisites
	Building Applications Within CCS
	Building Applications Using Makefiles

	Configuring the Runtime
	RTSC mode Configuration
	Configuring Cores
	Configuring Memory Regions
	Configuring the Heap
	Configuring Reset and Startup functions

	Bare-metal Mode Configuration
	__TI_omp_reset
	__TI_omp_configure

	Platform file
	Device Name
	CPU Clock Frequency
	Memory Regions

	Integrating Applications Using QMSS
	OpenCL Mode
	Dispatching OpenMP with OpenCL

	OpenMP 3.0 Implementation-Defined Behaviors
	Migration Guide
	Key Differences between OpenMP Runtime 1.x and 2.x
	Porting an OpenMP Runtime 1.x Application to 2.x

	Resource Usage
	Reducing Memory Footprint in L2SRAM
	Stacks in MSMCSRAM

	Building the Runtime
	Defect Reporting
	Version History
	Appendix
	RTSC Mode Configuration Parameters
	Bare-metal Configuration Functions

