

VP00098-F

Infor
Texa
confi
repro
direc

Form-2 Rev. C

NOTICE

rmation conta
as Instrument
fidential and
oduced, or dis
ct recipients w

C

Op

E OF CONF

ained herein is
ts Incorporate
proprietary to
sclosed orally

without the ex

en Ev

Whi

Aug

FIDENTIAL

s subject to th
ed and your
o Texas Inst
y or in written
xpress written

vent M

ite Pap

gust 2012

 AND PROP

he terms of th
company, an
truments Inco
 form, in who
consent of T

Machin

er

2

PRIETARY I

he Non-Disclo
nd is of a hig
orporated. I

ole or in part,
Texas Instrum

ne

NFORMATI

osure Agreem
ghly sensitive
t shall not b
to any party o

ments Incorpor

P

ION

ment between
nature. It is

be distributed
other than the
rated.

Page i

n
s

d,
e

Texas Instruments Incorporated White Paper
August 2012 Open Event Machine

 Page ii

Revision Record

Document Title: Open Event Machine: White Paper

Revision

Description of Change
0.0.1 Created
0.0.2 Updated after review
1.0.0 Updated for release of SA_OpenEM 1.0.0.1

Texas Instruments Incorporated White Paper
August 2012 Open Event Machine

 Page iii

TABLE OF CONTENTS

1 SCOPE .. 1

2 REFERENCES ... 1

3 ACRONYMS .. 1

4 INTRODUCTION .. 1

5 WHY A NEW MULTICORE RUNTIME SYSTEM? .. 2

6 THE KEYSTONE ARCHITECTURE ... 2

7 EVENTS, QUEUES AND EXECUTION OBJECTS .. 4

8 SCHEDULING ... 6

9 DISPATCHING ... 7

10 PUTTING EVERYTHING TOGETHER .. 8

11 LOAD BALANCING ... 9

12 NON-UNIFORM MEMORY ARCHITECTURE ... 9

12.1 CACHE COHERENCY AND MEMORY CONSISTENCY ... 9
12.2 PRE-LOADING AND POST-STORING .. 11

13 SEAMLESS INTEGRATION ... 11

13.1 OPERATING SYSTEMS .. 11
13.2 INTERFACES AND ACCELERATORS .. 12

14 BENCHMARKS ... 13

14.1 MICRO BENCHMARKS ... 13
14.2 MACRO BENCHMARKS .. 14

15 CONCLUSION ... 15

Texas Instruments Incorporated White Paper
August 2012 Open Event Machine

 Page 1

 1

1 Scope 2
Open Event Machine is a library that implements a multicore runtime system. This paper 3
describes the operation and illustrates the performance of the Open Event Machine (OpenEM). 4
The API of OpenEM is defined by Nokia Siemens Networks. TI provides an implementation for 5
its high-performance multi-core DSP. 6

2 References 7
The following references are related to the feature described in this document and shall be 8
consulted as necessary. 9
 10

No Referenced Document Control Number Description

Table 1. Referenced Materials 11

3 Acronyms 12
 13

Acronym Description

Table 2. Acronyms 14

4 Introduction 15
TI is providing high-performance multi-core DSP since 2006. 16
 17
The first generation of multi-core DSP (TMS320C647x) had limited support for multi-core 18
programming. Programmers typically looked at those DSP as "multiple single-core DSP in a 19
single package". The integration effectively allowed achieving more revenue for a given area 20
and power budget and SW reuse allowed keeping the development cost low. 21
 22
The second generation of multi-core DSP (TMS320C66x) is built around the Multicore 23
Navigator. Those DSP belong to the KeyStone product line. The KeyStone architecture 24
provides an excellent platform for load balancing and allows reducing the cost per channel even 25
more. 26
 27
The Open Event Machine (OpenEM) is a multi-core runtime system developed for the KeyStone 28
product line. TI’s implementation extensively leverages KeyStone’s multicore infrastructure and 29
especially the Multicore Navigator. The main missions of OpenEM are to enable efficient 30
scheduling, dispatching and load balancing of work across the cores of a KeyStone device. 31
 32
In addition, the Open Event Machine enables support easy porting of multi-core applications 33
from one KeyStone device to another. It is able to transfer data between global shared and local 34

Texas Instruments Incorporated White Paper
August 2012 Open Event Machine

 Page 2

private memories and optionally manages cache coherency. Finally, it integrates well with many 1
interfaces and accelerators as well as with different Operating Systems. 2

5 Why a new Multicore Runtime System? 3
There are already many multi-core operating systems on the market. Although, multi-core 4
operating systems are capable of load balancing work across multiple cores, they are not up to 5
the job in several situations. 6
 7
In particular when the work is chopped in too small and/or too many chunks, the overhead 8
generated by operating systems will be prohibitive. It doesn't pay off to create a thread for a 9
chunk that takes only a few thousand cycles to execute, nor to create a thread for many hundreds 10
or thousands of chunks. 11
 12
Some programmers prefer to run their application on the bare metal (i.e. without operating 13
system). Other programmers use one of the many real-time operating systems that don't have 14
multi-core support yet. And still other programmers want to load balance work across cores 15
running different operating systems. Each of them will benefit from a multi-core runtime 16
system. 17
 18
A lot of research has been done on multi-core runtime systems. And several multi-core runtime 19
systems (OpenMP, OpenCL, TBB, ...) are already available on the market. They typically do not 20
rely on an operating system for the load balancing. They opted for a co-operative scheduler with 21
fibers instead of a pre-emptive scheduler with threads. But, they are also not designed for 22
embedded systems with specific requirements for heterogeneous platforms, real time constraints, 23
non-uniform memory architectures, ... 24
 25

6 The KeyStone Architecture 26
The Multicore Shared Memory Controller (MSMC) and the Multicore Navigator are the vital 27
building blocks of the KeyStone architecture. 28
 29

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Texas Ins
August 2

The MSM
SoC mas
(referred
cache/RA

The Mult
engines.
DMA en
accelerat

The Mult
and pop s
traffic sh

struments In
2012

MC provides
sters. There

to as DDR R
AM and L2 u

ticore Navig
 The Queue
gines use HW

tors) or from

ticore Navig
services of th

haping and pa

ncorporated

F

s access to th
are 2 shared
RAM). Eac
unified cach

gator consist
Manager pr

W queues to
m memory to

gator also ha
he Queue M
acket schedu

Figure 1: Ke

he shared me
d memories:
h C66x Core
e/RAM.

s of a centra
rovides atom
o transfer pac

memory.

s Packet RIS
Manager with

uling.

eyStone Arc

emories for o
on-chip (ref
ePac contain

al Queue Ma
mic access to

ckets betwee

SC engines.
h more sophi

chitecture

one or more
ferred to as M
ns one C66x

anager and m
thousands o

en memory a

 They allow
isticated serv

Ope

C66x CoreP
MSMC RAM

CPU, L1 pr

multiple Pack
of HW queue
and SoC mas

w extending t
vices, like qu

White P
en Event Mac

P

Pac and othe
M) and off-ch
rogram and d

ket DMA
es. The Pack
sters (interfa

the basic pus
ueue monito

Paper
chine

Page 3

er
hip
data

ket
aces,

sh
ring,

Texas Instruments Incorporated White Paper
August 2012 Open Event Machine

 Page 4

 1
 2

 3
Figure 2: Multicore Navigator 4

7 Events, Queues and Execution Objects 5
OpenEM provides services to manage events, queues and execution objects. All objects are 6
shared among all cores and all services are multi-core safe. 7
 8
Events typically carry the data to process, but they can be data-less tokens as well. The data 9
payload can be stored in a single buffer or scattered over multiple buffers. OpenEM provides 10
services to access each buffer of the event payload. 11
 12
Each event belongs to an event pool. Each event pool has a free queue. At init time, all events 13
are queued in the free queues of their event pools. OpenEM also provides services to allocate 14
and free events. An event is allocated from the corresponding free queue and freed to the same 15
free queue. 16
 17
Execution objects encapsulate the algorithm to execute when an event is received. The 18
algorithm is executed by a receive function. The user implements the receive function and 19
registers it with the execution object. OpenEM provides services for creating and deleting 20
execution objects. 21
 22
Queues connect events (data) and execution objects (algorithms). Each queue is associated with 23
one execution object and all queued events will be processed by this execution object. OpenEM 24
provides services for creating and deleting queues as well as a service for sending events to 25
queues. 26
 27

Texas Instruments Incorporated White Paper
August 2012 Open Event Machine

 Page 5

Each queue has a context. The purpose of the context is to store persistent data, i.e. data that 1
stays alive before and after the processing of an event. 2
Each queue exposes attributes that control the scheduling of the queued events. The scheduling 3
attributes will be described in [8]. 4
 5
We can distinguish four states during the lifetime of an event: 6
• free: the event sits in the free queue of its event pool 7
• preparing: the event has been allocated but not yet sent 8
• ready: the event has been sent and is waiting to be processed 9
• running: the event is being processed 10
 11
In order to go from the ready to the running state, OpenEM needs to schedule and dispatch the 12
event. The scheduler selects a non-empty queue, pops the oldest event and sends it to a 13
dispatcher. The dispatcher looks up the corresponding execution object and calls the receive 14
function. We will further describe the scheduling and dispatching operations in [8] and [9]. 15
 16

 17

Texas Instruments Incorporated White Paper
August 2012 Open Event Machine

 Page 6

Figure 3: Event Life Cycle 1

8 Scheduling 2
There are four criteria to select a non-empty queue: priority, atomicity, locality and order. 3
 4
• Priority 5

Each queue has a priority. If two queues with different priorities are not empty, all events in 6
the high-priority queue will be scheduled before any event in the low-priority queue. 7
Note that a high priority event will never pre-empt a low priority event! 8

 9
• Atomicity 10

A queue is either parallel or atomic. Unlike a parallel queue, an atomic queue does not allow 11
that a core starts processing an event from this queue as long as another core is processing 12
another event from this queue. OpenEM provides a service to notify the end of atomicity. 13
When the scheduler receives such notification, it is allowed to schedule the next event from 14
the atomic queue. 15
The user can protect critical sections without using a single mutex. As a result, the user code 16
is more robust and efficient. 17

 18
• Locality 19

Each queue belongs to a queue group. Each queue group has a core mask selecting the cores 20
that are allowed to process the events from the queue group. OpenEM provides services for 21
creating and deleting queue groups. 22
The user can cover the whole spectrum between static and dynamic load balancing with 23
minimal changes to the user code. 24

 25
• Order 26

If two or more events are eligible for scheduling the event that has been ready for the longest 27
time will be scheduled. 28

 29
There are 2 ways to operate the scheduler: asynchronous and synchronous. 30
 31
• Asynchronous 32

The scheduler is deployed on the Packet RISC engines of the Multicore Navigator. Each 33
scheduling operation is triggered by a scheduling request submitted by a C66x core. 34
OpenEM provides a service to submit a scheduling request. Typically, the user will request 35
the next event before the processing of the current event ends. As a result, the scheduling 36
and processing will be pipelined. If the user hasn't requested the next event, OpenEM will 37
automatically submit a scheduling request when the processing of the current event has 38
ended. The scheduler is deployed on the Packet RISC engines of the Multicore Navigator. 39
The scheduling is based on all three criteria: priority, atomicity and locality. 40

 41
• Synchronous 42

The scheduler is deployed on the C66x cores of the C66x CorePac. OpenEM will schedule 43
the next request when the processing of the current event ends. 44

Texas Instruments Incorporated White Paper
August 2012 Open Event Machine

 Page 7

The scheduling is only based on priority and locality. 1
 2
Note that OpenEM does not yet support synchronous scheduling. 3

9 Dispatching 4
The dispatcher is deployed on the C66x cores of the C66x CorePac. The user typically calls the 5
dispatcher from within a dispatch loop. The dispatcher is non-blocking. If no event is available, 6
it returns immediately with a negative response. The user decides how to respond to negative 7
responses. He may ignore them, or he may suspend the dispatch loop after a critical number of 8
negative responses. 9
 10

int main(void) { 11
 ... 12
 while(1) 13
 if (ti_em_dispatch_once()!=EM_OK) my_handle_false_dispatch(); 14
 ... } 15

 16
If an event is available, the dispatcher will look up the execution object and call the receive 17
function. 18
 19

em_status_tt ti_em_dispatch_once(void) { 20
 ... 21
 if((lvEventHdl=fetch_event())==EM_EVENT_UNDEF) return EM_ERR_NOT_FOUND; 22
 ... 23
 receive(lvEventHdl,...); 24
 ... 25
 return EM_OK; } 26

 27
There are 2 ways to operate the dispatcher: run-to-completion and co-operative. 28
 29
• Run-to-Completion 30

The receive function is supposed to run to completion. Therefore, it should not wait on a 31
condition that depends on the execution of another receive function. Otherwise, deadlocks 32
are very likely to occur. 33
The run-to-completion dispatcher works with both asynchronous and synchronous 34
schedulers. 35

 36
• Co-operative 37

OpenEM provides services for suspending and resuming events. 38
When a running event is suspended, the execution of the receive function is suspended. 39
OpenEM saves the state of the receive function and yields to the dispatcher. The event is 40
now in the suspended state. 41
When a suspended event is resumed, the execution of the receive function does not 42
immediately resume. OpenEM brings the event in the scope of the scheduler. The event is 43
now in the resumed state. The execution of the receive function will resume when the event 44
is re-scheduled and re-dispatched. Resumed events have precedence over ready events of the 45
same priority. 46
The co-operative dispatcher only works with the synchronous scheduler. 47

 48

Texas Instruments Incorporated White Paper
August 2012 Open Event Machine

 Page 8

OpenEM does not support pre-emptive dispatchers. Pre-emption allows suspending the current 1
execution without its cooperation. The user should rely on the services of an Operating System 2
if pre-emption is required. 3
 4
Note that OpenEM does not yet support co-operative dispatching. 5

10 Putting Everything together 6
The figure below illustrates a case involving two C66x cores. The run-to-completion dispatcher 7
runs on each C66x core and the asynchronous scheduler runs on a Packet RISC core. There are 8
three execution objects. Each execution object has a receive function that has been implemented 9
by the user. There are many (thousands) queues. Most (if not all) of the queues are atomic. 10
There are also two queue groups: two execution objects (1 and 3) belong to one queue group 11
selecting both C66x cores and one execution object (2) belongs to the other queue group 12
selecting one C66x core (1). 13
 14
When the scheduler receives a request for the next event from a C66x core, it will select a non-15
empty queue (based on priority, atomicity and locality), pop the oldest event from the selected 16
queue and send the event to the requesting C66x core. 17
When the dispatcher finds the next event, it will find the execution object and call the 18
corresponding receive function. During the execution of the receive function, new events may 19
be allocated and sent to the queues. 20
In the case of atomic events, the receive function (or dispatcher) will notify the end of atomicity 21
to the scheduler. 22
 23

 24
Figure 4: Putting Everything together 25

Texas Instruments Incorporated White Paper
August 2012 Open Event Machine

 Page 9

11 Load Balancing 1
There are two distinct strategies to achieve dynamic load balancing: eager and lazy. 2
 3
• Lazy 4

Lazy (or passive) load balancing relies on event consumers (C66x cores) requesting the next 5
event when they become ready. There is no explicit load balancer involved. The load 6
balancing overhead is minimal. But the load balancing quality will be sub-optimal, in 7
particular when the execution time of the receive functions varies a lot. 8

 9
• Eager 10

Eager (or active) load balancing involves an explicit load balancer. As soon as an event 11
becomes ready, the load balancer will assign it to a consumer (C66x core). The load 12
balancing overhead is typically high. Load balancing decisions are based on estimates of the 13
number of resources required for the processing of each event. The quality of the load 14
balancing can be very high, but also depends on the accuracy of the resource estimates. 15

 16
OpenEM natively supports lazy load balancing. If eager load balancing is required, the user has 17
to take the load balancing decisions and send the events to queues that are consumer dedicated. 18
 19
We remind that OpenEM supports static load balancing as well and allows gradually moving 20
from static to dynamic load balancing with minimal changes to the user code. 21

12 Non-uniform Memory Architecture 22
The KeyStone architecture offers multiple levels of memory. 23
 24

 25
Table 3: KeyStone Memories 26

 27
Note that there are also prefetch engines between the MSMC/DDR RAM and L1/L2 caches. 28
 29
In general, free events are not yet associated with a C66x CorePac and the user should map event 30
buffers to shared memory. In many cases, the event buffers would reside in a memory segment 31
with caching enabled. 32

12.1 Cache Coherency and Memory Consistency 33
Parallel programmers want to know who manages the coherency of the caches and the 34
consistency of the memory. The KeyStone architecture does not provide HW-managed full 35
cache coherency. Therefore, cache coherency needs to be SW-managed and relaxed. 36
 37

Texas Instruments Incorporated White Paper
August 2012 Open Event Machine

 Page 10

Whenever an event is sent, SW must ensure that the event buffers are written back to memory 1
and invalidated in cache. Whenever an event is freed, SW must ensure that the event buffers are 2
invalidated in cache. In addition, SW needs to think of raising memory fences and flushing 3
prefetch buffers as well. 4
 5
OpenEM always takes care of memory fences and prefetch buffers. It is up to the programmer 6
whether he wants to manage the cache coherency of event buffers himself or if he wants to 7
delegate this responsibility to OpenEM. The policy may differ from pool to pool, or even from 8
event to event. 9
 10
Not only event buffers, but also queue contexts require attention. Whenever atomic processing is 11
complete, SW must ensure that the queue context is written back to memory and invalidated in 12
cache. It needs to raise a memory fence as well. It is up to the programmer whether he wants to 13
manage the cache coherency of queue contexts himself or if he wants to delegate this 14
responsibility to OpenEM. The policy may differ from queue to queue. 15
 16
The tables below summarize the coherency and consistency operations performed by OpenEM. 17
 18

 19
Table 4: Cache coherency and memory consistency for event buffers 20

 21

 22
Table 5: Cache coherency and memory consistency for queue contexts 23

 24
Note that OpenEM does not yet take care of the cache invalidate/write-back of the queue context. 25
 26
Cache coherency operations can be very costly, in particular for large buffers. OpenEM will 27
skip cache coherency operations whenever possible: for instance, when a buffer has not been 28
accessed, when the next consumer runs on the same core, ... 29
 30
The programmer should ensure that all event buffers and queue contexts are aligned with a cache 31
line. Otherwise, there is a risk of data corruption due to false sharing. 32

Texas Instruments Incorporated White Paper
August 2012 Open Event Machine

 Page 11

12.2 Pre-loading and Post-storing 1
OpenEM offers the option to pre-load the event buffers in local L2/L1 RAM. The user specifies 2
for each event whether it needs to be pre-loaded. 3
 4
Whenever the scheduler has scheduled an event with pre-loading enabled, it will push the event 5
to a TX queue of the Packet DMA engine. The Packet DMA engine will allocate a local event 6
and transfer the event payload from the global event buffers in MSMC/DDR RAM to a local 7
event buffer in L2/L1 RAM and push the local event to an RX queue. The goal is to have the 8
event payload in the local event buffer before the event is dispatched. As a result, the receive 9
function will suffer many less read stalls. 10
 11
Stale data in L1 cache is automatically updated during a transfer to L2 RAM. The major benefit 12
is that there is no need to invalidate the local event buffer in the L1 cache. In addition, every 13
read has a chance to hit the L1 cache. The read stalls will drop further and may ultimately 14
completely disappear. 15
 16
If the event payload is scattered, all global event buffers will be pre-loaded in a single local event 17
buffer. This simplifies the event processing for sure. In addition, it is possible to pre-load only 18
the start of the event payload. This is useful if the event payload does not fit into the local event 19
buffer or if only the first part of the event payload is required for processing the event. 20
 21
Post-storing allows transferring the event payload from a local event buffer in L2/L1 RAM to 22
global event buffers in MSMC/DDR RAM. It will happen each time a local event is sent to a 23
queue. Like for pre-loading, the benefits are many-fold: less (or no) write stalls and no overhead 24
from write-back and invalidate operations. 25
 26
Note: OpenEM does not yet support post-storing. 27
 28
Pre-loading and post-storing are only supported by the run-to-completion dispatcher. 29
Furthermore, OpenEM does not allow pre-loading or post-storing the queue context. 30

13 Seamless Integration 31

13.1 Operating Systems 32
OpenEM is able to operate in a heterogeneous OS environment: some cores may have SW 33
running on the bare metal, others may have SW running on an OS and still others may have SW 34
running on another OS. There will be only one dispatch loop on a bare metal core, but there may 35
be one dispatch loop per OS thread on a core running an OS. 36
 37
There are several reasons why the user would like to have an OS running on at least one of the 38
cores. An OS would offer more services than OpenEM does (memory management, file 39
systems, device drivers, ...). In addition, an OS brings pre-emption into the picture. In a pre-40
emptive system, a job of the highest priority starts running as soon as it is ready. In a run-to-41
completion or co-operative system, this job has to wait until a core frees up when a running job 42
completes or yields. Two use cases need special attention: 43
• Dispatch loop running in low-priority thread 44

Texas Instruments Incorporated White Paper
August 2012 Open Event Machine

 Page 12

If the run-to-completion or co-operative dispatcher cannot guarantee that real-time deadlines 1
are met for high priority events, the programmer may create a high-priority thread to execute 2
those events. The OS will pre-empt the dispatch loop as soon as the run conditions of the 3
high-priority thread are met. 4

• Dispatch loop running in high-priority thread 5
If there are low-priority events that occupy a core for a long time, the programmer may 6
create a low-priority thread to execute those events. It is the responsibility of the 7
programmer to suspend the dispatch loop and block the dispatch thread when he observes 8
event starvation. The OS will schedule the low-priority thread when the dispatch thread is 9
blocked. The dispatch loop needs to resume when a new event is available. For that 10
purpose, the scheduler generates an interrupt whenever it schedules an event. When a core 11
receives an interrupt, the interrupt service routine should unblock the dispatch thread. The 12
synchronous scheduler does not support this use case. 13

 14

 15
Figure 5: Integration with OS 16

 17
Note: OpenEM does not yet support multiple dispatch loops per core. 18

13.2 Interfaces and Accelerators 19
OpenEM interworks seamlessly with CPPI-compliant interfaces and accelerators. CPPI is the 20
protocol used by Packet DMA to transfer data between memory and HW. CPPI-compliant HW 21
is able to allocate and send events without SW intervention. It is transparent for the event 22
consumer whether the event has been produced by HW or SW. Likewise, CPPI compliant HW 23
is able to receive and free events without SW intervention. It is transparent for the event 24
producer whether the event will be consumed by HW or SW. 25
 26
Note: KeyStone products may still have some interfaces and accelerators that are not CPPI-27
compliant. 28

Texas Instruments Incorporated White Paper
August 2012 Open Event Machine

 Page 13

14 Benchmarks 1

14.1 Micro Benchmarks 2
Micro benchmarks focus on the performance of OpenEM. There are two performance metrics: 3
 4
• Overhead 5

The overhead measures all C66x cycles spent by OpenEM during the live time of an event. 6
It includes cycles for allocating, sending, dispatching and freeing the event. If the scheduler 7
is synchronous, the overhead includes cycles for scheduling as well. Overhead caused by 8
cache coherency operations is not included since it depends on the event payload sizes and 9
the NUMA architecture. The overhead should be low compared with the event processing 10
time. We will consider that the overhead is acceptable if it stays below 10% of the 11
processing time. 12

 13
• Latency 14

If the scheduler is asynchronous, the overhead is not sufficient as performance metric. The 15
latency measures the C66x cycles elapsed between the instant when the dispatcher requests 16
the next event and the instant when the dispatcher calls the receive function. If the 17
processing time of the current event is shorter than the latency, the dispatcher will stall. 18
Therefore, the minimal processing time should be longer than the maximal latency. Note that 19
the latency depends on the number of C66x cores running the dispatcher and the number of 20
Packet RISC engines running the scheduler. 21

 22
The table below shows the measured overhead and latency of the OpenEM implementation with 23
the asynchronous scheduler running on one Packet RISC engine and the run-to-completion 24
dispatcher running on eight C66x cores. Measurements for the synchronous scheduler or co-25
operative dispatcher are not yet available. 26
 27

Texas Instruments Incorporated White Paper
August 2012 Open Event Machine

 Page 14

 1
Table 6: Overhead and Latency 2

 3
The table indicates that OpenEM is able to efficiently support event processing times of 6K 4
cycles or more. 5

14.2 Macro Benchmarks 6
Macro benchmarks focus on the performance of an application running with OpenEM. The 7
performance metric is the speedup, which is defined as follows. 8
 9

݌ݑ݀݁݁݌ݏ ൌ
݁݉݅ݐ ݊݋݅ݐݑܿ݁ݔ݁ ݈ܽ݅ݐ݊݁ݑݍ݁ݏ

݁݉݅ݐ ݊݋݅ݐݑܿ݁ݔ݁ ݈݈݈݁ܽݎܽ݌

 10
We assume an ideal sequential execution without memory read/write stalls, which implies that 11
all data is in L2 RAM. However, the parallel execution will be impaired by four sources of 12
degradation: 13
• OpenEM overhead: cycles spent by OpenEM during the live time of an event (see 14.1). 14
• OpenEM stalls: cycles spent by OpenEM dispatcher waiting for the next event (see 14.1). 15
• NUMA overhead: cycles spent to maintain cache coherency and memory consistency or 16

cycles spent to pre-load and post-store (see 12). 17
• Memory stalls: cycles spent waiting for read data or write status. 18
 19
The figure below shows the multi-core speedup for a synthetic application. The application has 20
three parameters: the event execution time, the amount of input data and the amount of output 21
data. The application uses eight C66x dispatching cores and one Packet RISC scheduling engine 22

Texas Instruments Incorporated White Paper
August 2012 Open Event Machine

 Page 15

to processes 1024 events. Pre-loading transfers the input data from DDR RAM to L2 RAM and 1
post-storing (implemented outside OpenEM for the time being) transfers the output data from L2 2
RAM to DDR RAM. 3
 4

 5
Figure 6: Multicore Speedup 6

 7
The figure illustrates that OpenEM enables a close-to-ideal (90%) multi-core speedup for 8
applications that process an event in 8K cycles, consume 2K bytes of input data and 9
produce 1K bytes of output data. As expected, the multi-core speedup will degrade if the 10
event processing time decreases, but also if the amount of data consumed or produced increases. 11
The former is due to the OpenEM overhead and stalls, the latter due to the NUMA overhead and 12
memory stalls. When lots of data are consumed or produced, the Packet DMA throughput 13
becomes the bottleneck and the NUMA overhead may be lower if pre-loading and post-storing 14
are switched off. 15

15 Conclusion 16
OpenEM is a true multi-core runtime system offering dynamic load balancing. It comes with an 17
asynchronous scheduler and run-to-completion dispatcher considering priority, atomicity, 18
locality and order. A synchronous scheduler and co-operative dispatcher are planned in order to 19
address a wide variety of concurrency patterns. 20
 21

Texas Instruments Incorporated White Paper
August 2012 Open Event Machine

 Page 16

The provided services are low-level, but don't prevent building higher-level runtime systems 1
above OpenEM. Prototypes of OpenMP and OpenCL runtime systems are currently under 2
development. 3
 4
OpenEM is able to manage lots (thousands) of events with low (less than 600 cycles) overhead. 5
As such, it can achieve a high (more than 90%) multi-core efficiency for events taking as few as 6
6000 processing cycles. 7
 8
An application relying on OpenEM services can be deployed on a variable number of cores 9
without changing the application code. The programmer can opt for static load balancing for an 10
early deployment and smoothly move to dynamic load balancing for later deployments. Easy 11
porting between different KeyStone devices is guaranteed. 12
 13
OpenEM understands the inherent challenges of an embedded environment. It runs on the bare 14
metal as well as with a mix of Operating Systems. It deals with a Non-Uniform Memory 15
Architecture and allows interworking with various HW producers and consumers. 16

