Open Event Machine library

User Guide

Applies to Product Release: 01.06.00.02:
Publication Date: September, 2013

Document License
This work is licensed under the Creative Commons Attribution-NoDerivs

3.0 Unported License. To view a copy of this 1license, visit
http://creativecommons.org/licenses/by-nd/3.0/ or send a letter to
Creative Commons, 171 Second Street, Suite 300, San Francisco,

California, 94105, USA.

Contributors to
this document

Copyright (C) 2011 Texas Instruments Incorporated -
http:/Amaw.ti.com/

Texas Instruments, Incorporated
821 avenue Jack Kilby

06270 Villeneuve-Loubet Cedex,
FRANCE

wi# TEXAS INSTRUMENTS



Revision Record

Document Title:

User Guide

Revision Description of Change.
00.00.00.01 Document created.
01.00.00.00 Public delivery.
01.00.00.01 Updated scope section.
01.00.00.02 Updated document with new OpenEM directory tree.
01.01.00.00 Updated document with information related to:
- the new sections organization
- the private event free queue
- the extra event descriptor dedicated to OpenEM usage
01.06.00.02 Reworked document to integrate ARM and ARM & DSP sections. Those

sections still remain to be completed.
Aligned document on OpenEM changes.




TABLE OF CONTENTS

L ACRONY S Lo 5
2 CONVENTIONS . ..ot e et eea e e aaaes 6
B S COPE ... e 7
4 INTRODUCGCTION Lot e et e e e eeaeeens 8
S5INSTALLING OPENEM ... 9
6 OPENEM ON DSPo....cii e 13
6.1 INStalling OPENEM N CCS.......oiiiiiiiiiie e 13
6.2 Managing exampleS iN CCS.......ooiiiiiiieie bbb 18
LI 0 R [ 0o To) B o o 1< od £ OO PSP OPRTR 18
LGB 0 =T 11 o T od TR 18
LGB I T {0 T o] =T TR 19

TR e V0] o] =TSRSS 19
6.3.1 ADSLIACHION TAYEY .. .eeiiie et e en 19
6.3.1.1.1ti_em_pool_CONTIg2 L...ciieiiieece e 20
6.3.1.1.2ti_em_pl_pool_CONFIQ2 t.....cceeiiieiii e 21
6.3.1.1.3ti_em_hwW _CONTIG2 .. eiiiieiiie e 22
6.3.1.1.4 ti_em_init_global2() .....cooveiiie e 23
6.3.1.1.5ti €M NIt _10CAI2() .eeovveeieeeeiiee et 24
6.3.1.1.6 ti_em_exit_global2().......ccceeiiieiiieiiee e 25

6.3.2 FIlE OrQaNIZAtION. ... ..cciiiei ettt e s e et e et e e sr e e snb e e st e e e te e e nraeennre s 25
6.3.3 MEMOIY MANAGEMENT ....eeiiiiieeeiiiee e sttt e e et e e e st e e e st e e e st e e e st e e e e steeeessntaeeessntaeeesneneeesnnees 26
LR T 1V 1= 0 o] V=TT SRR 26
6.3.3.2 Libraries Memory SECHIONS. .......ciiviiiiiiiiiie et s e stre e sie e e et e e srae e snae e snreearee e 28
6.3.3.3 Abstraction layer Memory SECHIONS .......c.veeiiei i 29
6.3.3.4 Application MEMOIY SECHIONS .......eiiiviie ittt e e re e 30

TR . T 1] o] L= OSSR 31
6.3.4.1 Initialization ProCEAUIE. .......ccvii e et srae e e e e e 36
6.3.4.1.1 OpenEM global initialization ............ccccceeiiie i 39
6.3.4.1.2 OpenEM local initialization ............cceiiiiiiii i 43

6.3.4.2 OPENEM 0DJECES CrEAtION .......veiiiieiiiic et e e ees 44

LT I 30 L SRRSO 48

T I B L SRS 56
6.3.4.2.3 OPENEM ACHIVALION .......coiiiiiiii et te e re e et e e srae e snaeeens 57

5.3.4.3 SUMMAIY ....eiieiiiiie ettt e e e e e e st e e e st e e e s sab e e e snb e e e e snte e e e s nateeeesnstaeeesnsaeeesnnteeens 61
6.3.4.3.1 SYMDOLIC CONSTANES .....veeviieiieie et 61
6.3.4.3.2 Variables @nd Arrays ........eeivieiieieeie ettt 64
B.3.4.3.3 FUNCLIONS. .. .eetieieeie ettt ettt ettt be bbb et enbeete e 64

5.3.4.4 OULPULS ...ttt b e bt e bt e s b e e e st e e e b et e et e e e sbbe e snbe e e be e e e 64
6.3.4.4.1 Parallel queues — preload size (64*1024) — 1 scheduler thread ............cccooceeveenennn. 65
6.3.4.4.2 Atomic queues — preload size (64*1024) — 1 scheduler thread.............cccoccvevvenennn 66
6.3.4.4.3 Parallel queues — preload off — 1 scheduler thread............cccceveiiiiiinieiieice 68
6.3.4.4.4 Parallel queues — preload off — 4 scheduler threads...........ccccoevvveiieiie i 70

R RN =T T ] o] LT ]« SRRSO 71
6.3.5.1 INitialization PrOCEAUIE.......ciuviiiie ettt esreesneenneas 72



7 OPENEM ON ARM........cooee.

8 OPENEM ON ARM AND DSP



1 Acronyms

Acronym Description

API Application Programming Interface
CCS Code Composer Studio

CPPI Common Packet Programming Interface
DMA Direct Memory Access

DSP Digital Signal Processor

EO Execution Object

EQ Event Queue

OpenEM Open Event Machine

PDSP Packed Data Structure Processor
PKTDMA PacKeT DMA

QMGR Queue ManaGeR

QMSS Queue Manager Sub-System

RTSC Real Time Software Component




2 Conventions

e “shall” (“must”, “needs”) is used to express an obligation.
e ‘“should” is used to express a recommendation.



3 Scope

This document addresses release 1.6.0.2 and later of the Open Event Machine
(OpenEM).



4 Introduction

Purpose of the user’s guide is to provide examples of OpenEM usage for both DSP
and ARM.

All examples implement variants of an application parallelizing Fast Fourrier
Transform (FFT) operations.

This application contains a producer, several workers, several consumers and a
remote entity as shown in Figure 1.

producer  ——jobs—| workers results»  consumer

I
statistics

remote

Figure 1: High level block diagram

e The producer generates one sequence of MY_JOB _NUM jobs equally
distributed over MY_FLOW_NUM flows. One job triggers one complete FFT
operation. The input data of the FFT are stored in the job. The size of the FFT
is a power of two randomly distributed between MY_FFT_SIZE_MIN and
MY _FFT_SIZE_MAX. The size of the FFT is also stored in the job. There is
no dependency between jobs. Once all jobs have been generated, the producer
becomes a worker.

e The workers are inactive during the complete duration of jobs generation. The
workers consume the jobs, compute the FFTs and forward the results to the
consumers. They generate statistics that are stored in a shared memory. Once
activated, the workers are asynchronous. A worker is allowed to consume jobs
from any flow.

e The consumers are inactive during the complete duration of FFTs
computation. They consume and process the FFT results. In the example, this
processing checks that the FFT results are correct. Once activated, the
consumers are asynchronous.

e The remote entity is inactive during the complete duration of FFT results
checking operation. It processes the job statistics from the shared memory.



5 Installing OpenEM

This section of the document details the procedure to install the OpenEM when it is
delivered as a standalone package. Check the OpenEM release notes document to get
the versions of the other TI tools that are required to be installed. This installation
procedure is not required when the OpenEM is delivered through a MCSDK package.

On Windows platforms, OpenEM is delivered with the

The following installation procedure applies to the OpenEM 1.0.0.2 on Keystone 11
devices.

When executing the installer on a Windows platform, the following InstallJammer
Wizard starts:

ﬁ e eI eSS e LD, J _]a

Welcome to the InstallJammer Wizard for Open
Event Machine

0 This will install Dpen Event Machine wersion 1_0_0_2 on your

DE I'I campuker,

Eve nt It is recommended that vou close all other applications before
conkinuing.

M dC h ine Click Mext to continue or Cancel ko exit Setup,

Do MORE
with
MUL CORE

Texas Instruments
S 2012

Mest = [ Cancel




e Itindicates the version of the OpenEM it is installing. Click on Next.

i
i eI eSS e, Lj _j a'
. L
Texas Instruments Open Event Machine ’

License Agreement

Released under the B3D License, please see the W manifest document at the rook of the
installation directory For details,

(%) I accepk the kerms of the license agreement.;

) I do not accept the kerms of the license agresment,

[ < Back ” Mext = ] [ Cancel

e Select “I accept the terms of the license agreement.” and click on Next.

10



i3 e e TR E LI Lj _] a*

Choose Destination Location

.

Whete should Open Event Machine be installed?

Setup will install Open Event Machine in the Following Folder,

Tainstall ko khis Falder, click Mext, Toinstall ko a different Falder, click Brawse and select anather
fFolder.

Deskination Falder

C:\Prograr Files) Texas Instrumentsiopenem_1_0_0_Z

[ < Back ]| Mewk > [ Cancel ]

e Select the destination folder for the OpenEM and click on Next.

i eI eSS e, Lj Iﬂf

Start Copying Files

=3
Review settings before copying files

Setup has enough information to skark copying the program Files, IF ywou wank ko review or

change any settings, click Back. IF vou are satisfied with the settings, click Mext bo begin copying
Files,

Install Directory:
Z:\Program Filest Texas Instrumentsiopenem_1_ 0 0_2

Setup Type:
Typical

< Back ]| Mest = [ Cancel




e Check the summary of information and click on Next.

i e R eSS e, Lj ]a'

InstallJammer Wizard Complete

0 The Installlarmmer Wizard has successFully installed Open Event
pe n Machine. Click Finish to exit the wizard,

Event
Machine

Do MORE
with
MUL CORE

(ds Instruments
12

The OpenEM is now installed, click on Finish.

12



6 OpenEM on DSP

This section of the document details how to configure the examples on Code
Composer Studio (CCS).

6.1 Installing OpenEM in CCS

Start CCS. Select your workspace.

[ 1
T | 1 I — : e
L DT HE DA e S TTETET ﬂ

Select a workspace

Code Composer Studio stores your projects in a folder called a workspace.
Choose a warkspace Folder ko use Far this sessian,

[ Juse this as the default and do nok ask again

kK ] [ Cancel

1§ TEXAS

INSTRUMENTS

e If the automatic “new product detection” is not activated, go to window ->
preferences, then Code Composer Studio -> RTSC -> Products. The following
window shall appear. OpenEM is not listed in the Discovered tools.

13



eI ErenGes EE

Products O g -

| bype filker text

g gfcnifl Tool discovery path:
= Code Compaser Studio [ C:fProgram Files/ Texas Instruments add...
- Build [ ftiTools
Remove
Edit
- Help

H

£ Install{Update

£ Run/Debug Discovered tools:
H

3

[2]]

Team = mh C6616 PDK || Refresh

i 10,012 [C:tiTools]pdk_ces16_1_0_0_12]

A& 100 [ Jpdk_cea16_1_0.0_9]
£ 1.0.0.08 [ Jpdk_ce4m5_1_0_0_8]
A 1,0,0,06 [ J

-2, DSPJEICS

- 5.41,11.38 [C:/tiTools/bios_5_41_11_38]

- 5.41.7.24 [CiftiTocls bins_5_41_07_24]

) DSPLIB CE6%

# 3.1.0.0 [CiftTools dsplb_cax=_3_1_0_0]

# 3.0.0.8 [CiftTools dsplib_caex=_3_0_0_8]

=) ﬂ EDMAS Low Lewel Driver

- -B

- Usage Data Collectar

tiTools, ElmiEa

tiTools,
tiTools/pdk_cé495_1_0_0_7]

g

[ automatically discover products each time Code Composer Studio is started

[Restore DeFau\ts] [ Apply J

@ [ o]

Check the Tool discovery path is correctly set to the OpenEM package path or add
it, click on Refresh.

14



' Add Discovered Products 1=1E3]

New Products Discovered

The Following products have been discovered and may be added to Code Composer Studio,
Flease select the products wou wish to have added (de-selected products will be re-discovered the next time).

:'EE'C:'I,Prugram Files\ Texas Instrumentsiopenem_1_0_0_2 Select all
Deselect all

Automatically discover new products each time Code Composer Studio is started

e
'::t,' Finish ] [ Cancel

e CCS detects the OpenEM as a new product. Click on Finish. If the automatic
“new product detection” is activated, this window pops up automatically when the
Tool discovery path is correctly set to the OpenEM package path.

15



L

New Products Discovered

The following products have been discovered and may be added to Code Composer Studio.

Flease select the products wou wish ko have added (de-selected products will be re-discovered the next time).

.ii,:‘%

ou will need to restart the Code Composer Studio For the changes to take

“-'\r“/ effect, Would vou like to restart now?

Yes

e Click on Yes to restart CCS.

Products
®- General Tool discovery path:
I+ —
= Code Compaser Studio i fPragram Files/Texas Instruments
+- Build [ iTanls
+- Debug
Grace
=I-RTSC
Products
+-Help
£ InstalfUpdate Discovered tools:
+- RunfDebug
- Team £ 1.0.0.19 [C:tTools/pdk_C678_1_0_0_19]
+- Usage Data Collectar S‘;‘% 1.0,0,17 [CiftiToolsfpdk_Ce678_1_0_0_17]
=% 1.0.0.15 [C/tiTools/pdk_CE678_1_0_0_15]
=Bk NDK
% 221,138 [CjtiTonlsindk_2_21_01_38]
£ 2,21,0,32 [CiftiToolsindk_2_21_00_32]
% 2,20.6.35 [C:/tiTonlsindk_2_20_06_35]
£ 2.20.4.26 [C:ftTools/ndk_2_20_04_26]
=B Open Event Machine
§:'§ 1.0.0.2 [C:/Program Files|Texas Instrumentsfopenern_1_0_0_2]
=B OpenMP BIOS runtime library
§:'§ 1.1.2.06 [C:)tiTanlsfomp_1_01_0Z_0A]
57:'5 1.1.2,03_beta [C:/bToolsfomp_1_01_02_03_beta]
=B SALLD
[¥] Automatically discover products each time Code Composer Studio is started
IC?:I

Mo
= [B][x]
=1 -
[Restore DeFauIts] [ Apply ]
[ Ok, ] [ Cancel ]

16



CCS now recognizes the OpenEM as a valid RTSC package to be used in projects.

17



6.2 Managing examples in CCS

Following procedure details how to import, build and run an example project in CCS.
Same procedure applies to all examples.

6.2.1.1 Import projects

To import the project in CCS:

= |n CCS, click on the menu “File -> Import...”, Select “Code Composer Studio
-> Existing CCS/CCE Eclipse Projects” and click on Next.

= Click on the “Browse” button next to “Select search-directory”, select the
example directory under
“C:\ti\openem_w_x_y_z\packages\ti\runtime\openem\dsp\examples”. The
project appears in the “Discovered projects” tab. Make sure it is selected and
click on Finish.

= The project now appears in the “Project Explorer” tab of the “C/C++ Edit”
perspective as a RTSC project and is ready to be configured and built.

6.2.1.2 Build Project

To configure the project for the build:

To select the active build configuration, right click on the project name ->
properties, then, click on Manage Configurations..., and select the build
configuration (Debug, Release), click on Set Active and click OK.

Ensure the correct versions of the PDK and OpenEM RTSC packages are selected
by right clicking on project name -> properties -> General -> RTSC.

Ensure the correct memory platform is selected by right clicking on project name -
> properties -> General ->RTSC. For an unknown reason, it is possible the
required memory platform does not appear in the drop down menu, in which case
the memory platform name is of the form
“ti.runtime.openem.dsp.examples.platforms.c6678 ex0”.

Ensure the symbolic constants in the file “my event machine.h” are correctly set
and save the file. Those constants are part of the application and configure the
OpenEM inline functions.

Ensure the OpenEM is correctly configured.

e Right click on the file Example.cfg -> Open With -> XGCONF, this will
make the “Available Products” tab to appear in CCS.

18



e Inthis tab, click on the arrows next to Other Products->openem_X_y z w-
>ti->runtime->openem.

e Click on Settings, this will make the Example.cfg->Settings tab to appear.

e Set the correct values for the debugFlag and the targetFlag and save.

To proceed through the build of the project:
e Clean the project by right clicking on Example_0 -> Clean Project.
e Build the project by right clicking on Example_0 -> Build Project.

The build generates a binary file under Binaries and a build directory.

6.2.1.3 Run project

The run procedure of the project is the standard procedure, it requires selecting a
ccxml file, connecting the target, loading the program and running the program.

6.3 Examples

The implementation of the OpenEM examples requires memory allocation,
configuration and initialization of the OpenEM process, creation and activation of the
OpenEM objects.

6.3.1 Abstraction layer

In order to hide to the user the complexity of initializing the QMSS, PKTDMA and
OpenEM, a software abstraction layer is provided with the examples. The user
configures a set of OpenEM parameters that allows the abstraction layer to initialize
the QMSS, PKTDMA and OpenEM entities. The abstraction layer is part of each
example code and is not part of the OpenEM library.

The abstraction layer provides three structures to be configured and three public APIs
to be called by the user to fully manage the QMSS, PKTDMA and OpenEM entities.

e ti_em_pool config2_t

e ti_em_pl pool config2_t
e ti_em_hw_config2_t

e ti_em_init_global2()

e ti_em_init_local2()

19



e ti_em_exit_global2()

The abstraction layer sets the value of the constant TI_EM_EVENT_NUMZ2 as the
max number of events allocated in parallel from all application event pools (in
Example_0, there are two application event pools, the public event pool and the exit
event pool).

The abstraction layer sets the value of the constant Emti LOCAL_EVENT_NUM as
the number of events of the preload event pools.

The abstraction layer assumes the memory sections listed in 6.3.3.3 are mapped on the
memory areas listed in 6.3.3.1.

The abstraction layer instantiates and manages the arrays of event descriptors used by
the OpenEM for the job processing.

The abstraction layer does not instantiate the array of event buffers because there
sizes are application specific.

6.3.1.1.1 ti_em_pool_config2_t

This structure contains the parameters required by the abstraction layer to configure a
public event pool. Figure 2 shows the ti_em_pool_config2_t prototype.

typedef struct ti_em pool config2 t
{

uint32 t event num;

uint8 t *buffer ptr;

uint32 t buffer size;

uint32 t ps word num;

uint32 t free policy;

ti em pool config t pool config;

} ti em pool config2 t;

Figure 2: ti_em_pool_config2_t

e event_num
o Number of events in the event pool.

e Dbuffer_ptr
o Pointer to the array of event buffers attached to the event pool when
the event pool buffer mode is set to

20



TI_EM_BUF_MODE_GLOBAL_TIGHT. It is set to NULL the event
pool buffer mode is setto TI_EM_BUF_MODE_GLOBAL_LOOSE.

e Dbuffer_size
o Size of one event buffer in bytes. It is set to 0 when the buffer_ptr is
set to NULL.

e ps_word_num
o Number of protocol specific word. Refer to the QMSS and CPPI
specifications for details.

e free_policy
o Event free policy. Refer to the QMSS and CPPI specifications for
details.

e pool_config
o OpenEM event pool configuration. Refer to the OpenEM API
specification for details.

6.3.1.1.2 ti_em_pl_pool_config2_t

This structure contains the parameters required by the abstraction layer to configure a
preload event pool. Figure 3 shows the ti_em_pl_pool_config2_t prototype.

typedef struct ti em pl pool config2 t
{

uint32 t core idx;
uint32 t event num;
uint8 t *buffer ptr;
uint32 t buffer size;
uint32 t ps word num;
uint32 t free gqueue idx;

} ti em pl pool config2 t;

Figure 3: ti_em_pl_pool_config2_t

e core_idx
o Dispatcher core index.

e event_num
o Number of events supported by the preload event pool.

e Dbuffer_ptr
o Pointer to the array of event buffers attached to the preload event pool.

e Dbuffer_size

21



o Size of one event buffer in bytes.

e ps_word_num
o Number of protocol specific word. Refer to the QMSS and CPPI
specifications for details.

e free_queue_idx
o QMSS general purpose hardware queue index allocated to the preload
event pool. Free events are stored in the preload event pool free queue.

6.3.1.1.3 ti_em_hw_config2_t

This structure contains the parameters required by the abstraction layer to configure
the OpenEM. Figure 3 shows the ti_em_hw_config2_t prototype.

typedef struct ti em hw config2 t

{
uint32 t ap private free queue idx;
uint32 t cd private free queue idx;
uint32 t hw gqueue base idx;
uint32 t hw sem idx;
uint32 t dma queues base idx;
uint32 t preload size a;
uint32 t preload size b;
uint32 t preload size c;

} ti em hw config2 t;

Figure 4: ti_em_hw_config2_t

e ap private free_queue_idx
o Index of the QMSS general purpose hardware queue containing the
private events used for Atomic Processing. This queue shall contain at
least 256 private events.

e cd private free queue_idx
o Index of the QMSS general purpose hardware queue containing the
private events used for Command Processing. This queue shall contain
at least 32 private events. This index can be the same as
ap_private_free_queue_idx.

e hw_queue_base_idx
o Base index for the TI_EM_HW_QUEUE_NUM contiguous QMSS
general purpose hardware queues required by the OpenEM.

e hw_sem_idx
o Index of the OpenEM hardware semaphore.

22



e dma_queue_base_idx
o Base index for the TI EM_DMA TX QUEUE_NUM contiguous
infrastructure PKTDMA hardware transmit queues.

e preload_size a
o Preload size A.

e preload_size b
o Preload size B.

e preload_size ¢
o Preload size C.

6.3.1.1.4 ti_em_init_global2()

Purpose of ti_em_init_global2() is to configure the QMSS and PKTDMA hardware IP
blocks and to initialize the QMSS, PKTDMA and OpenEM global shared variables.

It shall be called one and only one time by the master core.

ti_em_init_global2() gathers all parameters the user shall configure to initialize the
OpenEM.

Figure 5 shows the prototype of ti_em_init_global2().

em_status t ti_em init glebalZ (
uint32 t region num,
gmsz MemRegInfo * region config thl,
uint32 t pdsp num,
gmss_ PdspCfg * pdsp config_thbl,
uint32 t pool num,
ti_em pool configZ t * pool config2 thl,
uint32 t core num,
ti_em pl pool config2Z t * pl pool config2 thbl,

ti em hw config2 t hw config2

Figure 5: ti_em_init_global2()

ti_em_init_global2() requires the following parameters to be provided:

e region_num

23



o Number of QMSS memory regions the application uses for its
processing. It does not include the QMSS memory regions required by
the OpenEM.

region_config_tbl
o Table of parameters to configure the memory regions the application
uses for its processing. Qmss_MemReglnfo is detailed in QMSS LLD
API specifications. If region_num is set to 0, this parameter is set to
NULL.

pdsp_num
o Number of PDSPs the application uses for its processing. It does not
include the PDSPs required by the OpenEM.

pdsp_config_tbl
o Table of parameters to configure the PDSPs the application uses for its
processing. Qmss_PdspCfg is detailed in QMSS LLD API
specification. If pdsp_num is set to 0, this parameter is set to NULL.

pool_num
o Number of application event pools. It does not include the event pools
required for the preloading of the events.

pool_config2_tbl
o Table of parameters to configure the application event pools.

core_num
o Number of cores involved in the dispatching of events.

pl_pool_config2_tbl
o Table of parameters to configure the preloading event pools.

hw_config2
o Set of parameters to configure the OpenEM.

6.3.1.1.5 ti_em_init_local2()

Purpose of ti_em_init_local2() is to initialize the QMSS, PKTDMA and OpenEM
local variables on each core dispatching events. It shall be called one and only one
time per core after the ti_em_init_global2() is complete on the master core. It does not
require input parameters.

Figure 6 shows the ti_em_init_local2() prototype.

24



em status t ti em init local2 (
void

|

Figure 6: ti_em_init_local2()

6.3.1.1.6 ti_em_exit_global2()

Purpose of ti_em_exit_global2() is to close the QMSS, CPPI and OpenEM software
objects and to release the hardware resources used by the OpenEM.

It shall be called one and only one time by the master core.

Figure 5 shows the prototype of ti_em_exit_global2().

em status t ti em exit globalZ (|
void

|

Figure 7: ti_em_exit_global2()

6.3.2 File organization

Most of the example files have been named to identify their content. Groups of files
are dedicated to the initialization abstraction layer (ref. 6.3.3), to the OpenEM
initialization and to the application.

e The files dedicated to the abstraction layer are prefixed with “ti_em . The
user should not modify these files.

2

e The files dedicated to the OpenEM initialization are prefixed with “my em .
Variables required by the OpenEM, but that are dependent on the application
(e.g. “my_em_svProcEventBufMem[]”) are listed in these files. Also, all
symbolic constants required by the OpenEM are listed in these files.

e Most of the files dedicated to the Application are prefixed by “my ”. Files
related to the FFT processing are not prefixed.

e The other files

25



o my_event_machine.h is required and contains symbolic constants for
configuring the OpenEM. It can be modified by the application.

o gmss_device.c and cppi_device.c are required to build the Example_0
for Keystone | devices. For Keystone 11 devices, original PDK files are
included from ti_em_init.c. They contain the device specific
configuration for the QMSS and CPPI Low Level Drivers.

o osal.c contains an Operating System Adaptation layer which is used by
the QMSS and CPPI low level driver.

o em_pdk_hal.c contains the implementation of the OpenEM functions
pointers to abstract the QMSS and CPPI low level drivers.

o Example_x.cfg contains the memory configuration for example “x”.

= |t defines and maps the example memory sections on the
memory areas defined in the memory platforms.

= |t lists and configures the RTSC modules the project is
dependent on.
e xdc.useModule(‘ti.csl.Settings’);
e xdc.useModule(‘ti.drv.cppi.Settings’);
e xdc.useModule(‘ti.drv.qmss.Settings’);
xdc.useModule(‘ti.runtime.openem.Settings’);

6.3.3 Memory management

The OpenEM examples requires local versus shared and cached versus non cached
memories to be allocated. For that purpose, memory areas are created and memory
sections are mapped to these memory areas.

These memory sections are either:
e predefined by the QMSS, PKTDMA and OpenEM libraries,
e predefined by the abstraction layer,

e defined by the application.

6.3.3.1 Memory areas

A set of custom memory areas is created to manage “internal” versus “external”
memories and cached versus non cached memories.

These memory areas are defined in the memory platforms delivered along with the
OpenEM package in directory

26



$(OpenEMROootDirectory)\packages\ti\runtime\openem\dsp\examples\platforms.
Example_x, memory platform are post fixed “_exx”.

Memory areas are:

L1IPSRAM

o Used as cache memory, no length defined.

L1DSRAM

o Used as cache memory, no length defined.

L2SRAM
o memory : UMC RAM
o cache : enabled
MSMCSRAM
o memory : MSMC RAM
o cache : enabled
MSMCSRAM_NC
o memory : MSMC RAM
o cache : disabled
DDR3
o memory : DDR3
o cache : enabled
DDR3_NC
o memory : DDR3
o cache : disabled
PDSP1D
o memory : PDSP1 RAM
o cache: NA
PDSP2D
o memory : PDSP2 RAM
o cache: NA
PDSP3D
o Keystone Il only
o memory : PDSP3 RAM
o cache: NA
PDSP4D
o Keystone Il only
o memory : PDSP4 RAM
o cache: NA
PDSP5D
o Keystone Il only
o memory : PDSP5 RAM
o cache: NA
PDSP6D
o Keystone Il only
o memory : PDSP6 RAM
o cache: NA
PDSP7D
o Keystone Il only

For

27



o memory : PDSP7 RAM
o cache: NA
e PDSP8D
o Keystone Il only
o memory : PDSP8 RAM
o cache: NA
e PDSPSH
o Keystone Il only
o memory : PDSP shared RAM
o cache: NA

When using PDSP memory areas with DSP BIOS, it is mandatory to disable caching
and prefetching on MAR52 (0X34000000) for Keystone | devices and MAR35
(0x23000000) for Keystone Il devices. Not doing so will result in unpredictable
behavior of the QMSS when pushing and popping descriptors to QMSS hardware
queues. In the examples, it is done at runtime when initializing memories.

6.3.3.2 Libraries memory sections

QMSS, PKTDMA and OpenEM libraries require their predefined memory sections to
be mapped to the custom memory areas listed above. These memory sections contain
dedicated shared variables and local variables that are declared, defined and used
within the scope of these libraries.

e QMSS
o .qmss
= memory: MSMCSRAM_NC

e PKTDMA

o .cppi
= memory: MSMCSRAM_NC

e OpenEM
o .tiIEmGlobalFast
= memory: MSMCSRAM_NC
= size: my_em_getGlobalSizeFast()

o .tiIEmGlobalSlow
= memory : DDR3_NC
= size: my_em_getGlobalSizeSlow()

o .tiEmLocal

= memory : L2SRAM
= size: my_em_getLobalSize()

28



6.3.3.3 Abstraction layer memory sections

The abstraction layer requires its predefined memory sections to be mapped to the
custom memory areas listed above.

tIEmSvPrivateEventDscMem1

o memory: PDSP1D

O SiZe: TI_EM_PDSP_GLOBAL_DATA SIZE

o alignment: CACHE_L2_LINESIZE
tIEmSvPrivateEventDscMem2

o memory: PDSP2D

O SiZ€e: TI_EM_PDSP_GLOBAL_DATA SIZE

o alignment: CACHE_L2_LINESIZE
tIEmSvPrivateEventDscMem3

o memory: PDSP3D

O SiZ€e: TI_EM_PDSP_GLOBAL_DATA SIZE

o alignment: CACHE_L2_ LINESIZE
HIEmSvPrivateEventDscMem4

o memory: PDSP4D

O SIiZ€: TI_EM_PDSP_GLOBAL_DATA _SIZE

o alignment: CACHE_L2_ LINESIZE
tiIEmSvPrivateEventDscMem5

o memory: PDSP5D

O SIiZ€: TI_EM _PDSP_GLOBAL_DATA_SIZE

o alignment: CACHE_L2_LINESIZE
tiIEmSvPrivateEventDscMem6

o memory: PDSP6D

O SiZe: TI_EM_PDSP_GLOBAL_DATA SIZE

o alignment: CACHE_L2_LINESIZE
tiIEmSvPrivateEventDscMem?7

o memory: PDSP7D

O Size: TI_EM_PDSP_GLOBAL_DATA _SIZE

o alignment: CACHE_L2_LINESIZE
tIEmSvPrivateEventDscMem8

o memory: PDSP8D

29



O SiZ€e: TI_EM_PDSP_GLOBAL_DATA SIZE

(@]

alignment: CACHE_L2_LINESIZE

e . tiIEmSvPrivateEventDscMem

o

(@]

(@]

o

Keystone Il devices only
memory: PDSPSH
SiZ€: TI_EM_PDSP_GLOBAL_DATA SIZE

alignment: CACHE_L2_LINESIZE

e tIEmSvPublicEventDscMem

o

o

o

©)

memory: MSMCSRAM_NC / DDR3_NC
SiZe: (1+TI_EM_EVENT NUM2)* MY_EM_PUBLIC_EVENT DSC_SIZE

The first descriptor of any memory region storing public and preload
events is reserved to the OpenEM usage.

alignment: CACHE_L2_LINESIZE

e tiIEmGvLocalEventDscMem

©)

©)

©)

memory: L2SRAM
Size: (1+Emti LOCAL_EVENT_NUM)* MY_EM_PUBLIC_EVENT _DSC_SIZE

The first descriptor of any memory region storing public and preload
events is reserved to the OpenEM usage.

alignment: CACHE_L2_LINESIZE

6.3.3.4 Application memory sections

On top of its own memory sections dedicated to its own processing, the application
shall also map other additional memory sections dedicated to the OpenEM.

These memory sections contain the arrays of event buffers for both the public events
and the preload events. The size of the event buffers being application specific, these
sections cannot be transferred neither in the context of the OpenEM library, neither in
the context of the abstraction layer.

e .my_em sv_ProcEventBufMem

o

o

o

o

Location  for the array of public event buffers
(my_em_svProcEventBufMem[])

memory: MSMCRAM / MSMCRAM _NC / DDR3/ DDR3_NC
size: MY_EM_EVENT_NUM * MY_EM_EVENT_BUF_SIZE
alignment: CACHE_L2_ LINESIZE

e .my _em gvLocalEventBufMem

30



o Location for the array of preload event buffers
(my_em_gvPIEventBufMem[])

o memory: L2SRAM
o Size: MY_EM_PL_EVENT_NUM * MY_EM_PL_EVENT_BUF_SIZE
o alignment: CACHE_L2_LINESIZE

6.3.4 Example_0O

The Example_0 implements the application described in the introduction of the
document.

Figure 8 illustrates the Example_0 this implementation.

e | O1) €V €N { e

—reSUlt eVen tmm—

event pool
em_free()

em_alloc() em_alloc()

schedule

&

em_send() dispatch

My_sourceJob() | s e V — I —
em_send() schedule - ’ sink Queue

& .
dispatch (low priority)
Prod Proc Queue Work c
¢ roducer N (high priority) ¢ orkers N ¢ onsumers N
(master core) (all cores) (all cores)

Figure 8 : OpenEM implementation

e The producer is a DSP core (master). It calls a function “my_sourceJob()” that
performs the complete jobs generation. For each job, “my sourceJobs()” calls
“em_alloc()” to allocate an event from an event pool, fills the event buffers of
this event with control information and input data, calls “em_send()” to send
the event to one of the “Proc Queue” event queues (EQ). There is one “Proc
Queue” EQ per job flow.

e The workers are DSP cores. They consume the events coming from the “Proc
Queue” EQs. Upon reception of an event, a worker calls a function
“my_processJob()”. “my_processJob()” is the receive function of the
execution object (EO) linked to the “Proc Queue” EQs. “my_ processJob()”
processes the FFT, calls “em_alloc()” to allocate a new event from the event
pool to stores the FFT results and calls “em_send()” to send this event to a
single “Sink Queue” EQ. It calls “em_free()” to free the received event.

31



e The consumers are DSP cores. They consume the events coming from the
“Sink Queue” EQ. Upon reception of an event, a consumer calls a function
“my_sinkJob()”. “my_sinkJob()” is the receive function of the EO linked to
the “Sink Queue” EQ. “my sinkJob()” checks the correctness of the results. It
calls “em_free()” to free the received event.

e The remote entity is implemented by the master core. Statistics are processed
after the FFT results have been checked. It does not involve the OpenEM.

e Preloading mechanism is not illustrated on the figure.
On top of this implementation, an exit procedure based on the OpenEM has been

implemented. It is initiated by the master core after the statistics have been computed.
Figure 9 illustrates the exit procedure.

—Xit event:

exit
event pool

em_alloc( schedule
&
em_send() dispatch
my_em_exitGlobal() B — I e
Exit Queue
(low priority)
~f—master core=—jp- f—2al| cores=—ypp

Figure 9 : Exit procedure

e The master core calls the function “my em_exitGlobal()”.
“my em exitGlobal()” calls “em alloc()” to allocate
(MY_EM_CORE_NUM-1) events from an exit event pool and calls

“em_send()” to send the events to a single “Exit Queue” EQ.

e The dispatcher cores consume the events coming from the “Exit Queue” EQ.
Upon reception of an event, a core calls a function “my_em_exitLocal()”.
“my_em_exitLocal()” is the receive function of the EO linked to the “Exit

Queue” EQ. “my_em_exitLocal()” exits the program.

e Once all dispatchers have exited the program, the master core also exits the
program.

This implementation requires the following OpenEM objects to be created by the
application:

e FEvents

32



o (2* MY_JOB_NUM) events to store the input and output data of the
MY_JOB_NUM FFTs. They are called public events.

o (MY_EM_CORE_NUM - 1) events for the exit procedure. They are
called exit events.

e Event pools

o 1 public event pool to store the public events.
o 1 exit event pool to store the exit events.

e EOs

o 1 “Proc EO” EO associated to the “my processJob()” receive function.
o 1“Sink EO” EO associated to the “my_sinkJob()” receive function.

o 1 “Exit EO” EO associated to the “my em exitLocal()” receive
function.

o MY_EM_PROC_QUEUE_NUM “Proc Queues” linked to the “Proc
EO” EO.

o 1“Sink Queue” linked to the “Sink_EO” EO.
o 1 “Exit Queue” linked to the “Exit EO” EO.

The Example_0 covers the following OpenEM features:

o Parallel or atomic event queues

o The “Proc Queue” event queues are created as parallel or atomic
queues according to the value of the symbolic constant
MY_EM_PROC_QUEUE_TYPE defined in my_em_init.h.

o Event preloading

o The overall mechanism for preloading is always configured in
Example_0.

o Preloading is enabled or disabled for the public events according to the
value of the symbolic constant MY_EM_PROC_EVENT_TYPE
defined in my_em_init.h.

o Multi-threaded scheduler

o The multi-threaded scheduler is configurable on Keystone 11 devices
only. A single scheduler is used for Keystone | devices.

33



o The number of scheduler threads is configured according to the value
of the symbolic constants MY_EM_SCHEDULER_THREAD_NUM
defined in my_em_init.h.

Figure 10, Figure 11 and Figure 12 show the main procedure of Example_O0.

int
main
void
)
{
/o

* initialization
w f
if (my init () < 0)

return -1;

S
* on master core
v f
if (DNUM == MY EM INIT CORE_IDX)
{
P
“ 1mnitialize f£ft shared wvariables
w
if (my initFft () < 0)
return —1;
fo

* initialize jobs
w
if (my initJobs () < 0)
return —1;
o e
* allocates ewvents, i1nitialize event buffers,
* * gend events
w
if (my sourcedobs () < 0)

return -1;

£
* synchronisation barrier
w

my waltAtCoreBarrier () ;

Figure 10: main() — 1/3

34



e
* request first event from scheduler
wf

ti em preschedule ();

e
* call event dispatcher
“/
while (my svRunningJobNum > 0)

ti em dispatch once ();

,I."J.-
* compute job statictics
“/
if (my_statsdobs () < 0)
{
printf ("Debug(Core %d): my statsJobs failed.\n", DNUM) ;
printf ("Debug(Core %d): \
“<CompletionTag> Example #0 failed.'\n", DNUM) ;
return -1;
1
,I."J.-
* terminate program
“/
if (my exit () < 0)
{
printf ("Debug(Core %d): my exit failed.\n", DNUM) ;
printf ("Debug(Core %d): \
“<CompletionTag> Example #0 failed.'\n", DNUM) ;
return -1;
1

printf ("Debug (Core %d): \
<CompletionTag> Example #0 passed.\n", DNUM) ;
pr:l_nt.f (“ '\‘1-_::::::::::'\'1-_“] H

Figure 11: main() - 2/3

35



e
* on dispatcher core
w

else

{
i

* synchronisation barrier
“

my wailtRAtCoreBarrier () ;

w f
ti em preschedule ();

i

* call event dispatcher
w f

while (1)

ti em dispatch once () ;

return H

Figure 12: main() - 3/3

e All cores enter the initialization procedure.

e The master core initializes the application and sends the public events.

e All cores dispatch the public events.
e The master core computes the statistics.

e The master core enters the exit procedure.

6.3.4.1 Initialization procedure

request first event from scheduler

The OpenEM initialization is divided in one global initialization and one local
initialization per core. It is simplified by the usage of the software abstraction layer

that handles most of the QMSS, PKTDMA and OpenEM initialization steps.

36



The application is responsible for instantiating the arrays of event buffers.
my_em_svProcEventBufMem[] and my_em_gvPIEventBufMem([] are instantiated in
the my_em_init.c file.

f* array of application event buffers */
#pragma DATR ALIGN (my_em svProcEventBufMem, CACHE LZ LINESIZE)
#pragma DATA SECTICN (my em svErocEventBufMem, ".my em svProcEventBufMem");

uintﬂ_t my em svProcEventBufMem[MY EM EVENT NUM * MY EM EVENT BUF STZE];

f* array of preload event buffers */

#pragma DATR ALIGN (my_em gvPlEventBufMem, CACHE LZ LINESTZE)

#pragma DATAR SECTICN (my em gvElEventBufMem, ".my em gvLocalEventBufMem") ;

uint8 t my em gvPlEventBufMem[MY EM PL EVENT NUM * MY EM PL EVENT EBUF SIZE];
Figure 13: event buffer instantiations

In Example_0, the OpenEM initialization is located in my _init() and implemented by
two function calls my_em_initGlobal() and my_em_initLocal().

Figure 14 and Figure 15 show the implementation of my_init().

37



int

my_ init

void
)
{
Jlu"Jr
* initialize memory per core
wf
if (my initMemLeocal () < 0)
return -1 ;
/o
* synchronisation barrier
v/

my waltZtCoreBarrier ();

/o
* on master core
w
if (DNUM == MY EM INIT CORE_IDX)
{
J
* initialize memory translation for QMSS
wf
if (my initMemGlobal () < O)
return -1 ;
J
* CpenEM global initialization
wf
if (my em initGlobal () < O)
return -1 ;
J
* application timer global initialization
w/
if (my initClockGlobal () < 0)
return -1 ;

my waltZtCoreBarrier () ;

Figure 14: my _init() 1/2

38



£
* OpenEM local initialization
w

if (my_em initLocal () < 0)

return —1;

£
* application timer local initialization
w

if (my_initClockLocal () < 0)

return —1;

my waltZtCoreBarrier ();

f
* on master core
v f
if (DNUM == MY EM INIT CORE IDX)

{
£

* CpenEM cbjects creation
"y
if (my em initQueues () < 0)

return —1;

return ;

Figure 15: my _init() 2/2

e my_em_initGlobal() is called on the master core.

e my_em_initLocal() is called on all cores after the global initialization is
complete.

6.3.4.1.1 OpenEM global initialization

In Example_0, the implementation of the OpenEM global initialization is performed
by my_em_initGlobal().

Figure 16 shows the implementation of my_em_initGlobal().

39



int
my em initGlobal (

volid

ti em pool config2 t lvPoolConfig2Thl[MY EM POOL NUM] ;
ti em pl pool config2 t lvElPoolConfig2Thl[MY EM CORE NUM] ;
ti em hw config2 t lvHwConfigZ2;

;e

* =zet pools initialization paramester

1}

we

my em initPoolConfig (lvPoolConfig2Thl);

7w
* =met preload pools initialization parameters
* f

my em initPlPoolConfig (lvPlPoolConfig2Thkl) ;

i
* =zet OpenEM initialization parameters
w f

my em initHwConfig (&lvHwConfigl) ;

e
* call CpenEM global initialization
Jr.l."
if (ti em init gleoball(
, NULL,
, NULL,
MY EM PCOCL NUM, lvPoolConfig2Thbl,
MY EM CORE NUM, 1vPlPoolConfig2Thl,
lvHwConfig2) != EM CE)

return —-1;

return :

Figure 16: my_em_initGlobal()

e The three configuration structures of the abstraction layer are instantiated.

e my_em_initPoolConfig() configures the table of parameters for the public
event pools.

e my_em_initPIPoolConfig() configures the table of parameters for the preload
event pools.

40



e my_em_initHwConfig() configure the table of parameters of the OpenEM.

e ti_em_init_global2() is a call to the abstraction layer API that initializes the
QMSS, PKTDMA and OpenEM using the table of parameters previously
configured.

o No other QMSS memory regions are used by the application.
o No other PDSPs are used by the application.

o MY_EM_POOL_NUM application event pools are used by the
application.

o MY_EM_CORE_NUM cores are configured for event preloading.

6.3.4.1.1.1 my_em_initPoolConfig

This function configures the parameters for the two public event pools that the
application uses for the job processing.

Figure 17 shows the implementation of my_em_initPoolConfig().

41



wvoid

my em initPoolConfig (

ti em pool config2 t * poolConfigl2Thl

poolConfig2Thl [MY EM EXIT PCOL IDX].pool config.free gueus idx =
MY EM FREE QUEUE EBASE IDX + MY EM EXIT POOL IDX;

poolConfig2Thl [MY EM EXIT PQCL IDX].pool config.buf mode =
TI EM EUF MODE GLOBAL TIGHT;

poolConfig2Thl [MY EM EXIT PCCL IDX].pool config.dsc wsize =
(size_ t) (MY EM PUELIC EVENT DSC_SIZE) ;

poolConfigq2Thl [MY EM EXIT PCOCL IDX].event num = MY EM EXIT EVENT NUM;
poolConfigl2Thl [MY EM EXIT PCOL IDX].free policy = 0;
pcolCcnfigETbl[MY_EM_EXIT_POOL_IDX].huEEer_ptr = NULL;

poolConfig2Thl [MY EM EXIT PCCL IDX].buffer size = 0;
poolConfigl2Thl [MY EM EXIT PCOL IDX].ps word num = 0;

poolConfig2Thl [MY EM POOL IDX].pool config.free queue idx =

MY EM FREE QUEUE BASE IDX + MY EM POOL IDX;
poolConfig2Thl [MY EM POCL IDX].pool config.buf mode = MY EM BUF MODE;
poolConfig2Thl [MY EM POCL IDX].pool config.dsc wsize =

(size t) (MY EM PUBLIC EVENT DSC_SIZE) ;

poolCanigETbl[MY_EM_POGL_IDX].event_num = MY EM EVENT NUM;

poolConfig2Thl [MY EM POOL IDX]
poolConfig2Thl [MY EM POCL IDX]
poolConfig2Thl [MY EM BOOL IDX]
pDDlCanigETbl[MY_EM_POGL_IDX]

.free policy = 0;

.buffer ptr = my em svPFrocEventBufMem;

buffer size =

.ps_word num =

MY EM EVENT BUF SIZE;

,

Figure 17: my_em_initPoolConfig()

Though the “buf mode” parameter is set t0 TI_em_Bur_MoDE_cLoBAL_TiGHT for the “Exit”
event pool, the buffer pointer for this pool is set to NULL. Therefore, events allocated

from this pool act as tokens.

6.3.4.1.1.2 my_em _initPIPoolConfig

Figure 18 shows the implementation of my_em_initPIPoolConfig().

42



void
my em initPlPoolConfig
ti em pl pool configZ t * poolConfigiThkl

int 1;
for (1 = 0; 1 < MY EM CORE NUM; i++)

poolConfig2Thl[i] .core idx = 1i;
poclConfig2Thl[i] .event num = MY EM PL EVENT NUM;
poolConfig2Thl[i] .buffer ptr = (uintf t*)my em makelddressGlobal

(i, (uint32 t)my em gvElEventBufMem) ;
poolConfig2Thl[i] .buffer size = MY EM PL EVENT BUF SIZE;
poolConfig2Thl[i] .p2_word num = O;
poolConfig2Thl[i] .free gueus idx = MY EM PL FREE QUEUE B&ZSE IDX + 1i;

Figure 18: my_em_initPIPoolConfig()

6.3.4.1.1.3 my_em_initHwConfig

Figure 19 shows the implementation of my_em_initHwConfig().

void
my em initHwConfig

ti em hw config2 t * hwConfiglPtr

hwConfig2Ptr—>ap private free gueue idx = MY EM AP PRIVATE FREE QUEUE IDX;
hwConfig2Ptr->cd private free gueue idx = MY EM CD PRIVATE FREE QUEUE IDX;
hwConfig2Ptr—>hw queues base idx = MY EM HW QUEUE BRASE IDX;
hwConfig2Ptr—->hw_sem idx = MY EM HW SEM IDX;
hwConfig2Ptr—>dma gqueue base idx = MY EM DMA QUEUE BASE IDX;
hwConfig2Ptr-»preload size a = MY EM PRELORD SIZE &;
hwConfig2Ptr—->preload size b = MY EM PRELOAD SIZE B;
hwConfig2Ptr—>preload size ¢ = MY EM PRELOAD SIZE C;

return;

Figure 19: my_em_initHwConfig()

6.3.4.1.2 OpenEM local initialization

The local initialization is implemented by my em initLocal(). It calls
ti_em_init_local2() from the initialization abstraction layer.

43



Figure 20 shows the implementation of my_em_initLocal().

int
my em initLocal (

void

f
* call COpenEM local initialization
*
if (ti em init local2 () !'= EM OE)
return —-1;

return H

Figure 20: my_em_initLocal()

6.3.4.2 OpenEM objects creation

For the purpose of Example_0, several EOs, several EQs and one queue group shall
be created; there is no need for event groups. They are created by the master core at
the beginning of the scenario by calling my_initQueues(). Figure 21, Figure 22,
Figure 23 and Figure 24 show the implementation of my_initQueues()

These OpenEM objects are “semi static” objects in the sense that once created, they
cannot be deleted. Deleting them at runtime would require a synchronization
procedure between cores that is not implemented in the current version of the
OpenEM. Nevertheless, these objects can be created at any time during the life of the
application code.

44



int
my em initQueues |

vold

uint32 t 1;

em_gueue group t exit_queue_group;

f
* "Proc EQ" creation
w f
my em svProcEocHdl = em eo create (
"Proc EOQ",
my em eoStartDefault, NULL,
my em eoStopDefault, HNULL,
my processdJob, NULL) ;
if (my em svProcEoHdl == EM EC UNDEF)

return -1;

f

* loop over all Proc Queus

w f
for (i = 0; i € MY EM PROC QUEUE NUM; i++)
{
£
* "Proc Queue" create
v f
my_em_strocQueueHlebl[i] = em_gueue create |
"Proc Quesus",
MY EM PROC QUEUE TYPE,
EM QUEUE PRIC HIGH,
EM_QUEUE_GROUP_DEF&ULT};
if {my_em_strDcQueueHlebl[i] == EM QUEUE UNDEF)

return —-1;

Figure 21: my_em_initQueues() - 1/4

45



i
* add "Proc Queue" to "Proc EC"
w
if (em eoc add gqueus |
my_em svProcEoHdl,
my_em_strocQueueHlebl[i]} I= EM CF)

return -1;

f
* "PBroc EOQ" =start
*
if (em_eo_s=start(
my em svProcEoHdl,
NULL,
Dy

NULL) != EM CE) return -1;

S
* "gink EO" creation
w“
my em svSinkEoHd]l = em eo create (
"sink EQ",
my em eoStartDefault, NULL,
my em eoStopDefault, HNULL,
my =inkJob, NULL) ;
if (my em svSinkEoHdl == EM EQ UNDEF)

return -1;

w

my em svSinkQueueHdl = em gueue create |(

m

"gink Queu=",
EM QUEUE_TYFPE PARALLEL,
EM QUEUE PRIO LOW,
EM_QUEUE_GRGUP_DEF&ULT};

if {my_em_svSinkQueueHdl == EM QUEUE UNDEF)

return —-1;

Figure 22: my_em_initQueues() - 2/4

46



i
* add "Sink Queues" to "Sink EOV
e lu"
if (em eo add queue |
my_em svSinkEoHdl,
my em svSinkQueueHdl) != EM CFE)

return —-1;

i
* "gink EO" start
e l."
if (em eo start|
my_em svSinkEoHdl,
NULL,
D,

NULL) != EM CE) return -1;

P
* "Exit EO"™ creation
w
my em svExitEoHdl = em eo create |
"Exit EOQY,
my em eoStartDefault, HNULL,
my em eocStopDefault, NULL,
my em exitLocal, NULL) ;
if (my em svExitEcHdl == EM EC UNDEF)
return —-1;
S
* "Exit Queuese Group"
w

queue group creation

em core mask t lvMask;

em core mask zero (&lvMask);

for (1 = 1; 1 < MY EM CORE NUM; 1++)
em core mask set (1, &lvMas=sk) ;
exit gqueue group = em gqueue group create
"Exi:_;:eua_ﬂr::; R
(const em core mask t *) &lvMask,
S

NULL) ;

Figure 23: my_em_initQueues() - 3/4

(

47



6.3.4.2.1 EOs

f

* "Fwit Queus" create

e
my em svExitQueueHdl = em gqueue create |
Exit Queues",
EM QUEUE TYPE ATOMIC,
EM QUEUE PRIC LOWEST,
exit queue group) ;
if {my_em_stxitQueueHdl == EM QUEUE UNDEF)
return —-1;
f

* add "Exit Queus" to "Exit EQ"
W
if (em ec add queus |
my_em svExitEoHdl,
my em svExitQueusHdl) != EM CE)

return —-1;

f
"Exit ECQ" start
W
if (em eoc start |
my_em svExitEoHdl,
NULL,

r
NULL) != EM OF)

return —-1;

return H

Figure 24: my_em_initQueues() - 4/4

EOs are created using em eo create(). EQs are added to the EOs using
em_eo_add_queue(), finally, EOs are started using em_eo_start().

When created and started, the EO is associated to a receive function that is executed
by one of the dispatcher cores after an event is pushed into one of the added EQs.

48



All EOs of Example_0 share the same global and local start and stop functions, but
they differ with their receive functions.

e "Proc EO"

o This EO is linked to the my_processJob() receive function. This
receive function executes in the following order:

= A prefetch request to the scheduler. When getting this prefetch
request, the scheduler prefetches the next event for this
dispatcher core and eventually preloads this event.

= |f the preload is enabled, the receive function calls the
ti_em_claim_local() API to get access to the data preloaded in
the local event buffer.

= The allocation of a new event for storing the FFT results.
= The FFT processing.

= The dump of statistics data in shared memory.

= The free of the received event.

= The send of the new event into the “Sink Queue”.

o Figure 25, Figure 26, Figure 27 and Figure 28 show the
implementation of my_processJob().

49



vold
my processJob |
vold *eoCtxtPtr,
em event t eventHdl,
em event type t eventType,
em gueue t gueueHdl,

vold *queueCtxtPtr

uint8 t *1lvJobBufPtr;

my JobDsc *1lvJobDscPtr;
intlé t *lvDataInputThl;
intlé t *lvDataCutputThl;
volatile em event t lvCutputEventHdl;
uint32 t lvJobIdx;
uint32 t lvFft38ize;
uint32 t lvDataSize;
uint32 t lv3uccessFlag;
uint32 t lvStartTime;
uint32 t lv3topTime;

f

e

o]

refetch request
v f
ti em preschedule () ;

i
* access event buffer of received event.
* Could be a local buffer or the buffer of the
* global event.
w f
if (ti em get type preleocad (eventType) !=
TI_EM EVENT TYPE PRELOAD OFF)
lvJobBufPtr = (uint8 t *) ti em claim local ();
el=e
lvJobBufPtr = (uint8 t *) em event pointer (

(em event t) eventHdl);

lvJobDscPtr = (my JobDsc *) lvJobBufPtr;
lvJobBufPtr = lvJckBufPtr + MY JOB HDR SIZE;
lvDataInputTbhl = {intlE_t *) lvJobBufPtr:

Figure 25: my_processJob() - 1/4



o
* retrieve ctrl information from receiwved
* event buffer
w f
lvJobIdx = lvJobDscPtr—>jobIdx;
lvFftS8ize = lvJobDscPtr—->fftSize;
lvDataSize = lwvJobDscPtr->dataSize;
lvSuccessFlag = lvJobkDscPtr->successFlag;

f
* allocate a new event for =toring FFT results
o

lvCutputEventHdl
do
lvCutputEventidl = em alloc|

EM EVENT UNDEF;

lvDataSize,
TI_EM EVENT TYPE PRELOAD OFF,
MY EM POOL _IDX) ;
while (lvCutputEventHdl == EM EVENT UNDEF) ;

* access esvent buffer of new event

lvJocbBufPtr = (uint8 t *) em event pointer
(lvCutputEventHdl) ;

lvJobDscPtr = (my JokDsc *) lvJobBufPtr;

lvJobBufPtr = lvJobBufFtr + MY JOBE HDR SIZE;

lvDataCutputThl = {intlE_t *) lvJobBufPtr;

/e
* £i1l new event buffer with ctrl information
ny.
lvJobDecPtr->jobldx = lvJobIdx;
lvJTokDscPtr—>fftSize = lvFftSize;
lvJobDascPtr->dataSize = lvDataSize:;

lvJokDscPtr—>successFlag = lvSuccessFlag;

£
* get start time for statistics
ny
lvStartTime = my_readClockGlokal ()

Figure 26: my_processJob() - 2/4

51



switch (lvFftSize)
{
caze MY FFT STZE MTN:
DSE fftléxl6( my svTwiddleTbl0, lvFft3ize,
lvDataInputThl, lvDataCutputTbl) ;
brealk;
case *MY FFT SIZE MIN:
DSE fftléx16( my svTwiddleTbll, lvFft3ize,
lvDataInputThl, lvDataCutputTbl) ;
brealk;
case 2*MY FFT SIZE MIN:
DSE fftléxl6( my svTwiddleTbl2, lvFft3ize,
lvDataInputThl, lvDataCutputTbl) ;
brealk;
case S*MY FFT SIZE MIN:
DSE fftléxl6( my svTwiddleTbl2, lvFft3ize,
lvDataInputThl, lvDataCutputTbl) ;
brealk;

£
* get stop time for statistics
ny.
lvStopTime = my readClockGlokal ()

f
* gtore information for statistics
*
my_svJobDscTbl [1lvIcbIdx] .coreldx = DNUM;
my =svJobDscThbl[lvJcbIdx].startTime = lvStartTime;
my_=avJobDscTbl [1vJobIdx] .stopTime = lvStopTime;

Figure 27: my_processJob() - 3/4

52



em send (lvOutputEventHdl, my em sv3 inkQueuesHdl) ;

Figure 28: my_processJob() - 4/4
e "Sink EO"

o This execution object is linked to the my_sinkJob() receive function.
This receive function executes in the following order:

= A prefetch request to the scheduler.
=  The check of the FFT results.
=  The free of the receive event.

= Decrements a shared “running jobs” counter. Access to this
shared variable is protected using a semaphore.

o Figure 1 and Figure 30 show the implementation of my_sinkJob().

53



void
my sinkJob (
vold *eoCtxtPtr,
em event t eventHdl,
em event type t eventType,
em gqueue t gqueuesHdl,

vold *queueCtxtPtr

uint8 t *lvJobBufPtr;
my JobDsc *1lvJokbD=scPtr;
intlé t *lvDataTbl;
uint32 t lvJobIdx;
uint32 t lvFftSize;
uint32 t 1i;

prefetch regquest
v f
ti em preschedule ();

lvJobBufPtr = (uint8_t *) em event pointer (eventHdl);
lvJokbDscPtr (my JokDsc *) lvJokbBufPtr;

lvJobBufPtr = lvJokbBufPtr + MY JOE HDR SIZE;

lvDataTbkl = (intlé t *) lvJIobBufPtr;

Figure 29: my_sinkJob() — 1/2



A

* retrieve ctrl information from receiwved

* event buffer

w
1vJobIdx = lvJobDscPtr—-»>JobIdx;
lvFftSize = lvJobDscPtr->fftSize;

my s=vJobDscThbl [lvJobIdx] .successFlag = 1;

w

for (1 = 0; 1 <€ lvFftSize; i++)
{
if (i = (lvFft3ize >> 2))
{
if (lvDataThl[Z * i] == )

my svJobDscTbhl [lvJobIdx] .successFlag

if (lvDataTbl[Z * i + 11 1= 0)

my svJobDscTbhl [lvJobIdx] .successFlag

b
el=se
{
if (lvDataTkl[Zz * 1] != 0)
my svJobDscThl[lvJobIdx].successFlag
if (lvDataTkl[Z * 1 + 1] I= 0)
my svJobDscThl[lvJobIdx].successFlag
b

w

em free (eventHdl);

* decrement shared job counter
w“
my lock ();
my_szunninngbNum——;

my unlock () ;

Figure 30: my_sinkJob() — 2/2

"Exit EO"



o This execution object is linked to the my_em_exitLocal() receive
function. This receive function exists the dispatcher core.

o Figure 31 shows the implementation of my_em_exitLocal().

vold
my em exitLocal (
vold *eoCtxtPtr,
em event t eventHdl,
em event type t eventType,
em gueue t gueueHdl,

vold *queueCtxtPtr

em free (eventHdl);

my em svExitStatus++;

em atomic processing end () ;
abort () ;

Figure 31: my_em_exitLocal()

6.3.4.2.2 EQs

EQs created by the application are logical queues, not QMSS hardware gqueues.
Therefore, the application can create several thousands of EQs. Ultimately, the EQs
are mapped to the QMSS hardware queues according to their priorities and core
masks.

EQs are created using em_queue_create(). Then they must be added to an EO before
they can be used.

An EQ belongs to a queue group to which is attached a core mask. This core mask
allows selecting which dispatcher cores will be eligible for getting events from this
EQ. Queue groups are dynamically created, excepted for the default queue group that
exists by default. The default queue group is “all cores eligible” to the EQ. An EQ can
be parallel or atomic. An EQ has a priority.

EQs created for the purpose of Example_0 are:

e "Proc Queue"
o MY_EM PROC QUEUE NUM “Proc Queue” EQs are created.

o These EQs are of type MY_EM_PROC_QUEUE_TYPE that is
configured as parallel or atomic at compile time.

56



They are queues with the high priority.

They belong to the default queue group enabling all dispatcher cores to
dispatch events from these EQs.

They are added to the "Proc EO™ EO, meaning an event pushed into
one of these EQs will trigger a call to my_receiveJob().

e "Sink Queue"

o

o

o

One “Sink Queue” EQ is created.
This EQ is a parallel EQ.

It is a queue with the low priority.

It belongs to the default queue group.

It is added to the "Sink EO" EO, meaning an event pushed into this EQ
will trigger a call to my_sinkJob().

o "EXit Queue"

©)

©)

©)

One “Exit Queue” EQ is created.

This EQ is an atomic EQ.

It is a queue with the lowest priority.

It belongs to the “Exit Queue Group’ queue group.

It is added to the “Exit EO™ EO, meaning an event pushed into this EQ
will trigger a call to my_em_exitLocal().

6.3.4.2.3 OpenEM activation

Activating the OpenEM means allocating and sending events to the EQs and
configuring cores as dispatchers to process these events.

In Example_0, the allocation and send of the first set of events, corresponding to the
jobs creation of Figure 1, is performed in my_sourceJobs() by the master core.

Figure 32, Figure 33 and Figure 34 show the implementation of my_sourceJobs().

57



int

my_sourcedobs |

void

uint32 t i, j;

/™
* initialize job counter
w
my_szunningJDbNum = MY JOE NUM;

o
* loop over all jobs to create
v

for (i = 0; 1 < MY JOE NUM; i++)

{
volatile em event t lvEwventHdl;
uint8 t *lvJobBufPtr;
my JobDsc *lwvJobDscPtr;
intlé t *1lvDataTbl;
uint32 t lvFlowIdx;
uint32 t lvFftSize;
uint32 t lvDataSize;
uint32 t lvSuccessFlag;

lvFlowIdx = my_stDhDschl[i].ElDwIdx;
lvFftSize = my svJobDscTbl[i].fft3ize;
lvDataSize = my svJobDscThbl[i] .dataSize;

lvSuccessFlag = my svJobDscTbl[i].successFlag;

S+

* allocate ewvent
*

lvEwventHdl
do
1lvEventHdl = em_allac{lvDataSize,
MY EM PROC_EVENT TYFE,
MY EM POOL_IDX) ;
while (lvEventHdl == EM EVENT UNDEF) ;

EM_EVENT_UNDEF;

Figure 32: my_sourceJobs() — 1/3

58



if (lvEwventHdl == NULL)

return —1;
A
* ace=sz event buffer
v
lvJobBufPtr = (uint8 t *) em event pointer
o

* met ctrl information

v
lvJokbDscPtr = (my JobDsc *) lvJobBufPtr;
lvJobDscPtr—->jobIdx = 1i;
lvJobDscPtr—>flowlIdx = lvFlowIdx;
lvJobDscPtr—>»fftS8ize = 1lwvFftS8ize;
lvJobDscPtr—>dataSize = lvDataSize;
lvJobDscPtr—>successFlag = lvSuccessFlag;

Figure 33: my_sourceJobs() - 2/3

(lvEventHdl) ;

59



i
¥ =
*
lvJobBufPtr = lvJobBufPtr + MY JOB HDR SIZE;
lvDataTbl = (intlé_t *) lvJobBufPtr;

LEi|

FT input data

L

for (7] = 0; 7 < lvFPftSize; J++)
{
switch (] & )
{
case
*]vDataThl++ = 1;
*]vDataThl++ = 0;
brealk;
case
*]vDataThl++ = 0
*]vDataThl++ = 1;
brealk;
case

*]vDataTkhl++ = (-1} :;

*]vDataThl++ = 0;
brealk;
case
default:
*]vDataThl++ = 0;
*]vDataTbhl++ = (-1} ;
break;
}
I3
i
* zend event to EQs
e l."

em send(lvEventHdl,
my em svProcQueueHdlTb]l [1vFlowIdx]) ;

return ;

Figure 34: my_sourceJobs() - 3/3

Once my_sourceJobs returns, the master core becomes a dispatcher core. As for the
other dispatcher cores, it first calls ti_em_preschedule() to request an event from the
OpenEM scheduler, then it calls ti_em_dispatch_once() to dispatch and process an
event scheduled by the OpenEM scheduler.

The activation of the dispatcher cores is performed in main().



6.3.4.3 Summary

Listed below are the symbolic constants, variables and functions to be implemented to
run Example_0 with OpenEM.

6.3.4.3.1 Symbolic constants

o MY_EM_CORE_NUM (TI_EM_CORE_NUM)

o Number of cores involved with the OpenEM, TI_EM_CORE_NUM is
an OpenEM symbolic constant.

o Setto 4 when using C6670

o MY_EM_INIT_CORE_IDX (0)
o Master core Index

o Hard coded to core 0 for Example_0 as for the exit procedure, the
queue group does not include core 0.

o MY_EM_PROC_QUEUE_NUM (32)

o Number of high priority parallel “Proc Queue” EQs that need to be
created.

o MY_EM_PROC_QUEUE_TYPE (EM_QUEUE_TYPE_PARALLEL)
o Type of the MY_EM_PROC_QUEUE_NUM Proc Queue” EQs.

o MY_EM_PROC_EVENT_TYPE
(TI_EM_EVENT_TYPE_PRELOAD_ON_SIZE_C)

o Type of the events that are allocated in my_sourceJobs() when creating
the jobs. It indicates event preloading is enabled.

o MY_EM_PUBLIC_EVENT DSC_SIZE (64)

o Size of the event descriptors in bytes. This value is used to dimension
the array of descriptors.

o MY_EM_POOL_NUM (2)

o Number of event pools required by the application. One is the public
event pool containing all the events involved in the job processing. The
other is the exit event pool to exit the application.

61



MY _EM_POOL_IDX (0)

o Index of the public event pool containing the public event involved in
the job processing.

MY_EM_EVENT_NUM (2048)
o Number of public events in the public event pool.

MY_EM_EVENT_BUF_SIZE (32*1024+CACHE_L2_LINESIZE)
o Public event buffer size of the public events of the public event pool.

MY_EM_BUF_MODE (TI_EM_BUF_MODE_GLOBAL_TIGHT)
o Public event pool buffer mode.

MY_EM_COH_MODE (TI_EM_COH_MODE_ON)
o Public event pool coherency mode.

MY_EM_EXIT_POOL_IDX (1)
o Index of the exit event pool.

MY_EM_EXIT_EVENT_NUM (MY_EM_CORE_NUM)
o Number of exit events in the exit event pool.

MY_EM_PRELOAD_SIZE_A (256)
o Number of bytes for the preload size A

MY_EM_PRELOAD_SIZE B (2*1024)
o Number of bytes for the preload size B

MY_EM_PRELOAD_SIZE_C (64*1024)
o Number of bytes for the preload size C

MY_EM_PRELOAD _EVENT _NUM (2)

o Number of preload events in the preload event pool. This value is
hardcoded and cannot be changed by the user.

62



MY _EM_PRELOAD EVENT BUF_SIZE (MY_EM_PRELOAD_SIZE_C)

o Preload event buffer size of the preload events of the preload event
pool.

MY _EM_AP_PRIVATE_FREE_QUEUE_IDX (1022)

o Index of the QMSS general purpose hardware queue containing the
private events used for Atomic Processing. This queue shall contain at
least 256 private events.

MY_EM_CD_PRIVATE_FREE_QUEUE_IDX (1023)

o Index of the QMSS general purpose hardware queue containing the
private events used for Command Processing. This queue shall contain
at least 32 private events. This index can be the same as
MY_EM_AP_PRIVATE_FREE_QUEUE_IDX.

MY_EM_HW_QUEUE_BASE_IDX (1024)

o QMSS general purpose queue base index for OpenEM internal
processing. It shall be aligned on multiple of 128.

MY _EM_FREE_QUEUE_BASE_IDX (2048)

o QMSS general purpose queue base index for the application event
pools. These queues store the free events before they are allocated by
the application.

MY_EM_PRELOAD FREE_QUEUE_BASE_IDX
(MY_EM_FREE_QUEUE_BASE_IDX + MY_EM_POOL_NUM)

o QMSS general purpose queue base index for the preload event pools.

MY_EM_DMA_QUEUE_BASE_IDX (0)
o Relative QMSS transmit queues base index for preloading.

MY_EM_HW_SEM_IDX (3)
o OpenEM hardware semaphore.

TI_EM_EVENT_NUM2 (MY_EM_EXIT_EVENT_NUM +
MY_EM_EXIT_EVENT_NUM)

o Total number of application events the application can allocate in
parallel from the application event pools. This constant is required by
the abstraction layer.

63



6.3.4.3.2 Variables and arrays

The application is responsible for instantiating the arrays of event buffers:

o my_em_svProcEventBufMem[ My_EM_EVENT_NUM * MY_EM_EVENT_BUF_SIZE]
o Array of application event buffers

o my_em_gvPIEventBufMem[my_EM_PL_EVENT NUM * MY_EM_PL_EVENT_BUF_SIZE]

o Array of preload event buffers

6.3.4.3.3 Functions

o em_status_tti_em_init_global2()
o Global initialization of the OpenEM.

o em_status_tti_em_init_local2(void)
o Local initialization of the OpenEM.

o em_status_tti_em exit_global2(void)
o Global exit of the OpenEM.

o my_em_initQueues()
o Create all OpenEM objects involved in the application processing

o my_processJobs(), my_sinkJobs(), my_em_exitLocal()

o Application receive functions associated to the EOs created by
my_em_initQueues()

o my_sourceJobs()
o Allocates and sends public events to the OpenEM.

6.3.4.4 Outputs

Complete logs are provided below for several configurations.

64



o Each core returns
o The total number of jobs it has processed.
o The number of jobs per flow.
o The Min/Mean/Max number of cycles to perform the job processing.
o The Min/Mean/Max number of cycles consumed by the dispatcher.

o The OpenEM handles the event buffer cache coherency.

6.3.4.4.1 Parallel queues — preload size (64*1024) — 1 scheduler thread

This test-case uses the following configuration:

- my_device_idx : 0
- my_process_idx : 0
- nb scheduler pdsp : 1
- thread #0 on pdsp : 0

- AP private_free_queue: 1022
- CD private_free_queue: 1023

- hw_queue_base_idx : 1024

- dma_queue_base_idx : 0

- pool_num i 2
Init Done

data check OK!

Statistics for core @:

Number of jobs : 123

Number of jobs per flow: 346 724252435232424536052343
3437544

Min/mean/max processing cycles : 5471/32323/78992

Min/mean/max overhead cycles : 2283/8378/37857

Statistics for core 1:

Number of jobs : 130

Number of jobs per flow: 4 447 553444243273525462376
3643423

Min/mean/max processing cycles : 5430/30542/78520

Min/mean/max overhead cycles : 2263/8119/40714

Statistics for core 2:

Number of jobs : 129

Number of jobs per flow: 4 4 2 2 228452235944462244734
4565344

Min/mean/max processing cycles : 5411/30199/78736

Min/mean/max overhead cycles : 2283/8645/38105

Statistics for core 3:
Number of jobs : 136

65



Number of jobs per flow: 56 2 2454834335352456573444
4384155

Min/mean/max processing cycles : 5437/28737/77862

Min/mean/max overhead cycles : 2263/8639/32373

Statistics for core 4:

Number of jobs : 135

Number of jobs per flow: 326 47 45285855435326516423
3324645

Min/mean/max processing cycles : 5458/29398/76708

Min/mean/max overhead cycles : 2251/8221/31733

Statistics for core 5:

Number of jobs : 125

Number of jobs per flow: 357 3535444355454634333333
3552343

Min/mean/max processing cycles : 5445/31226/78564

Min/mean/max overhead cycles : 2261/9250/37216

Statistics for core 6:

Number of jobs : 112

Number of jobs per flow: 453 4351244343234442426375
4224252

Min/mean/max processing cycles : 5589/35195/78324

Min/mean/max overhead cycles : 2315/10184/36483

Statistics for core 7:

Number of jobs : 134

Number of jobs per flow: 6 2 23444325834536462633524
8423846

Min/mean/max processing cycles : 5367/29065/79182

Min/mean/max overhead cycles : 2261/8541/30645

Statistics for all cores

Total number of jobs: 1024

Total number of jobs per flow: 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32

Min/mean/max processing cycles : 5367/30721/79182

Min/mean/max overhead cycles : 2251/8718/40714

Start/stop/run cycles: 61441377/83040250/21598873
Debug(Core 0): <CompletionTag> Example #@ passed.

6.3.4.4.2 Atomic queues — preload size (64*1024) — 1 scheduler thread

This test-case uses the following configuration:

- my_device_idx : 0
- my_process_idx : 0
- nb scheduler pdsp : 1

66



- thread #0 on pdsp : 0
- AP private_free_queue: 1022
- CD private_free_queue: 1023

- hw_queue_base_idx 1 1024

- dma_queue_base_idx 1 0

- pool_num : 2
Init Done

data check OK!

Statistics for core @:

Number of jobs : 128

Number of jobs per flow: © © © 0 © © 32 0 © 0 0 32 0 @ ©
032000000

Min/mean/max processing cycles : 5477/29779/75840
Min/mean/max overhead cycles : 2289/9614/33311

Statistics for core 1:

Number of jobs : 128

Number of jobs per flow: 32 0 0 0 000000000 320
0000003200

Min/mean/max processing cycles : 5541/29537/76492
Min/mean/max overhead cycles : 2263/9404/98521

Statistics for core 2:

Number of jobs : 128

Number of jobs per flow: © 0 32 0 00 00 32000000
003200000

Min/mean/max processing cycles : 5365/28332/75520
Min/mean/max overhead cycles : 2267/9476/94877

Statistics for core 3:

Number of jobs : 128

Number of jobs per flow: © 0 0 0 0 0 0 32 00 0 0 0 0 32
000000320

Min/mean/max processing cycles : 5473/31841/77854
Min/mean/max overhead cycles : 2255/9730/56523

Statistics for core 4:

Number of jobs : 128

Number of jobs per flow: © 32 0 © 00 000000 3200
© 000000 32

Min/mean/max processing cycles : 5413/33339/78114
Min/mean/max overhead cycles : 2269/10316/83855

Statistics for core 5:

Number of jobs : 128

Number of jobs per flow: © © 0 32 0 0 0 0 00 320000
32 0000000

Min/mean/max processing cycles : 5443/30416/76502
Min/mean/max overhead cycles : 2300/9286/81657

0

0

0

0

0

0

032000000

0000000 32

320000000

000000320

0000003200

003200000

67



Statistics for core 6:

Number of jobs : 128

Number of jobs per flow: 0 © © 0 32 0 0 0 032000000000 320000
000320000

Min/mean/max processing cycles : 5365/29563/76584

Min/mean/max overhead cycles : 2273/9137/38183

Statistics for core 7:

Number of jobs : 128

Number of jobs per flow: 0 © 0 © 0 32 000 00000032000032000
000032000

Min/mean/max processing cycles : 5393/32405/80924

Min/mean/max overhead cycles : 2253/9463/44483

Statistics for all cores

Total number of jobs: 1024

Total number of jobs per flow: 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32

Min/mean/max processing cycles : 5365/30651/80924

Min/mean/max overhead cycles : 2253/9553/98521

Start/stop/run cycles: 61522296/79139376/17617080
Debug(Core 9): <CompletionTag> Example #@ passed.

6.3.4.4.3 Parallel queues — preload off — 1 scheduler thread

This test-case uses the following configuration:

- my_device_idx : 0
- my_process_idx : 0
- nb scheduler pdsp 01
- thread #0 on pdsp : 0

- AP private_free_queue: 1022
- CD private_free_queue: 1023

- hw_queue_base_idx : 1024

- dma_queue_base_idx : 0

- pool num : 2
Init Done

data check OK!

Statistics for core O:

Number of jobs : 130

Number of jobs per flow: 5317 434243972444441435343
5634555

Min/mean/max processing cycles : 6013/33879/88422

Min/mean/max overhead cycles : 2711/6123/12570

Statistics for core 1:
Number of jobs : 114

68



Number of jobs per flow: 6 5 4
5214233

Min/mean/max processing cycles :

Min/mean/max overhead cycles :

Statistics for core 2:

Number of jobs : 133

Number of jobs per flow: 3 3 7
3223233

Min/mean/max processing cycles :

Min/mean/max overhead cycles :

Statistics for core 3:

Number of jobs : 141

Number of jobs per flow: 3 5 3
7354855

Min/mean/max processing cycles :

Min/mean/max overhead cycles :

Statistics for core 4:

Number of jobs : 129

Number of jobs per flow: 3 7 3
21064154

Min/mean/max processing cycles :

Min/mean/max overhead cycles :

Statistics for core 5:

Number of jobs : 134

Number of jobs per flow: 5 3 7
4594544

Min/mean/max processing cycles :

Min/mean/max overhead cycles :

Statistics for core 6:

Number of jobs : 121

Number of jobs per flow: 3 2 5
2335433

Min/mean/max processing cycles :

Min/mean/max overhead cycles :

Statistics for core 7:

Number of jobs : 122

Number of jobs per flow: 4 4 2
4134545

Min/mean/max processing cycles :

Min/mean/max overhead cycles :

Statistics for all cores
Total number of jobs: 1024

Total number of jobs per flow: 32 32 32 32 32 32 32 32

4235351443

6343/38430/89832
2681/6679/13592

4634542654

6111/32538/85768
2681/6046/15018

4364355233

6211/30396/84664
2679/5839/16640

3457634216

6149/33033/86036
2687/6545/16260

4363524264

6169/32112/85879
2685/6514/17361

3524526416

6021/35673/92994
2683/7120/16820

3541377354

6275/35197/90976
2683/6875/19778

32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32

Min/mean/max processing cycles :

6013/33763/92994

32 32

32 32

32 32

10

32

69



Min/mean/max overhead cycles :

2679/6447/19778

Start/stop/run cycles: 61428809/80746445/19317636
Debug(Core @): <CompletionTag> Example #@ passed.

This test-case uses the following configuration:

- my_device_idx

- my_process_idx

- nb scheduler pdsp
- thread #0 on pdsp
- thread #1 on pdsp
- thread #2 on pdsp
- thread #3 on pdsp

- AP private_free_queue:
- CD private_free_queue:
: 1024

- hw_queue_base_idx
- dma_queue_base_idx
- pool_num

Init Done

data check OK!

Statistics for core 0:
Number of jobs : 137

NPFRPOPOO®

w

1022
1023

Number of jobs per flow: 4 6 4

4344735

Min/mean/max processing cycles :

Min/mean/max overhead cycles :

Statistics for core 1:
Number of jobs : 130

Number of jobs per flow: 4 4 4

3744334

Min/mean/max processing cycles :

Min/mean/max overhead cycles :

Statistics for core 2:
Number of jobs : 128

Number of jobs per flow: 3 5 3

7353153

Min/mean/max processing cycles :

Min/mean/max overhead cycles :

Statistics for core 3:
Number of jobs : 123

Number of jobs per flow: 5 3 5

5232342

Min/mean/max processing cycles :

6537743734545 234524433

6161/31144/84086
2715/5844/11815

4336451473545236755233

6085/33484/90643
2685/6164/12383

4544457516525635342352

6145/33682/83529
2677/6199/13047

2353257224433377635445

6263/34955/83293

70



Min/mean/max overhead cycles : 2679/6443/15181

Statistics for core 4:

Number of jobs : 127

Number of jobs per flow: 3547 355234174353444163325
2635573

Min/mean/max processing cycles : 6313/33512/88039

Min/mean/max overhead cycles : 2681/6406/15061

Statistics for core 5:

Number of jobs : 119

Number of jobs per flow: 6 2 535314417 22343652434545
5253533

Min/mean/max processing cycles : 6125/35972/82947

Min/mean/max overhead cycles : 2697/6709/18799

Statistics for core 6:

Number of jobs : 137

Number of jobs per flow: 3554543535235343432464675
4456546

Min/mean/max processing cycles : 6163/30879/85305

Min/mean/max overhead cycles : 2687/6238/17931

Statistics for core 7:

Number of jobs : 123

Number of jobs per flow: 422235343447 44655422355414
2535336

Min/mean/max processing cycles : 6262/34900/85341

Min/mean/max overhead cycles : 2679/6918/18907

Statistics for all cores

Total number of jobs: 1024

Total number of jobs per flow: 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32

Min/mean/max processing cycles : 6085/33487/90643

Min/mean/max overhead cycles : 2677/6353/18907

Start/stop/run cycles: 61423992/80882278/19458286
Debug(Core 0): <CompletionTag> Example #@ passed.

6.3.5 Example_Op

Example_Op is a derivative of Example_0 that implements the post-store capability of
the OpenEM.

The purpose of the post-store is to offload to the infrastructure PKTDMA the transfer
of local data processed by a receive function to a global memory for a post processing
of these data by another entity.

71



The receive function allocate a local event by calling the ti_em_local() API and then
call the em_send() API on this event to trigger the PKDMA transfer.

This section is to be completed.

6.3.5.1 Initialization procedure
This section is to be completed.

72



7 OpenEM on ARM

This section is to be completed

73



8 OpenEM on ARM and DSP

This section is to be completed

74



	Open Event Machine library
	1  Acronyms
	2  Conventions
	3  Scope
	4  Introduction
	5 Installing OpenEM
	6  OpenEM on DSP
	6.1 Installing OpenEM in CCS
	6.2  Managing examples in CCS
	6.2.1.1 Import projects
	6.2.1.2 Build Project
	6.2.1.3 Run project

	6.3 Examples
	6.3.1 Abstraction layer
	6.3.1.1.1 ti_em_pool_config2_t
	6.3.1.1.2 ti_em_pl_pool_config2_t
	6.3.1.1.3 ti_em_hw_config2_t
	6.3.1.1.4 ti_em_init_global2()
	6.3.1.1.5 ti_em_init_local2()
	6.3.1.1.6 ti_em_exit_global2()

	6.3.2 File organization
	6.3.3 Memory management
	6.3.3.1 Memory areas
	6.3.3.2 Libraries memory sections
	6.3.3.3 Abstraction layer memory sections
	6.3.3.4 Application memory sections

	6.3.4 Example_0
	6.3.4.1 Initialization procedure
	6.3.4.1.1 OpenEM global initialization
	6.3.4.1.1.1 my_em_initPoolConfig
	6.3.4.1.1.2 my_em_initPlPoolConfig
	6.3.4.1.1.3 my_em_initHwConfig

	6.3.4.1.2 OpenEM local initialization

	6.3.4.2 OpenEM objects creation
	6.3.4.2.1 EOs
	6.3.4.2.2 EQs
	6.3.4.2.3 OpenEM activation

	6.3.4.3 Summary
	6.3.4.3.1 Symbolic constants
	6.3.4.3.2 Variables and arrays
	6.3.4.3.3 Functions

	6.3.4.4 Outputs
	6.3.4.4.1 Parallel queues – preload size (64*1024) – 1 scheduler thread
	6.3.4.4.2 Atomic queues – preload size (64*1024) – 1 scheduler thread
	6.3.4.4.3 Parallel queues – preload off – 1 scheduler thread
	6.3.4.4.4 Parallel queues – preload off – 4 scheduler threads


	6.3.5 Example_0p
	6.3.5.1 Initialization procedure



	7  OpenEM on ARM
	8  OpenEM on ARM and DSP

