

Open Event Machine library

User Guide

Applies to Product Release: 01.06.00.02:

Publication Date: September, 2013

Document License

This work is licensed under the Creative Commons Attribution-NoDerivs

3.0 Unported License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nd/3.0/ or send a letter to

Creative Commons, 171 Second Street, Suite 300, San Francisco,

California, 94105, USA.

Contributors to

this document

Copyright (C) 2011 Texas Instruments Incorporated -

http://www.ti.com/

Texas Instruments, Incorporated
821 avenue Jack Kilby
06270 Villeneuve-Loubet Cedex,
FRANCE

2

Revision Record

Document Title: User Guide

Revision

Description of Change.

00.00.00.01 Document created.

01.00.00.00 Public delivery.

01.00.00.01 Updated scope section.

01.00.00.02 Updated document with new OpenEM directory tree.

01.01.00.00 Updated document with information related to:

- the new sections organization

- the private event free queue

- the extra event descriptor dedicated to OpenEM usage

01.06.00.02 Reworked document to integrate ARM and ARM & DSP sections. Those

sections still remain to be completed.

Aligned document on OpenEM changes.

3

TABLE OF CONTENTS

1 ACRONYMS ... 5

2 CONVENTIONS .. 6

3 SCOPE ... 7

4 INTRODUCTION .. 8

5 INSTALLING OPENEM .. 9

6 OPENEM ON DSP .. 13

6.1 Installing OpenEM in CCS ... 13

6.2 Managing examples in CCS .. 18
6.2.1.1 Import projects ... 18
6.2.1.2 Build Project .. 18
6.2.1.3 Run project .. 19

6.3 Examples ... 19
6.3.1 Abstraction layer ... 19

6.3.1.1.1 ti_em_pool_config2_t ... 20
6.3.1.1.2 ti_em_pl_pool_config2_t .. 21
6.3.1.1.3 ti_em_hw_config2_t ... 22
6.3.1.1.4 ti_em_init_global2() ... 23
6.3.1.1.5 ti_em_init_local2() ... 24
6.3.1.1.6 ti_em_exit_global2() ... 25

6.3.2 File organization .. 25
6.3.3 Memory management .. 26

6.3.3.1 Memory areas .. 26
6.3.3.2 Libraries memory sections .. 28
6.3.3.3 Abstraction layer memory sections ... 29
6.3.3.4 Application memory sections ... 30

6.3.4 Example_0 .. 31
6.3.4.1 Initialization procedure... 36

6.3.4.1.1 OpenEM global initialization .. 39
6.3.4.1.2 OpenEM local initialization .. 43

6.3.4.2 OpenEM objects creation ... 44
6.3.4.2.1 EOs .. 48
6.3.4.2.2 EQs .. 56
6.3.4.2.3 OpenEM activation ... 57

6.3.4.3 Summary ... 61
6.3.4.3.1 Symbolic constants ... 61
6.3.4.3.2 Variables and arrays ... 64
6.3.4.3.3 Functions .. 64

6.3.4.4 Outputs .. 64
6.3.4.4.1 Parallel queues – preload size (64*1024) – 1 scheduler thread 65
6.3.4.4.2 Atomic queues – preload size (64*1024) – 1 scheduler thread................................ 66
6.3.4.4.3 Parallel queues – preload off – 1 scheduler thread.. 68
6.3.4.4.4 Parallel queues – preload off – 4 scheduler threads .. 70

6.3.5 Example_0p .. 71
6.3.5.1 Initialization procedure... 72

4

7 OPENEM ON ARM ... 73

8 OPENEM ON ARM AND DSP .. 74

5

1 Acronyms

Acronym Description

API Application Programming Interface

CCS Code Composer Studio

CPPI Common Packet Programming Interface

DMA Direct Memory Access

DSP Digital Signal Processor

EO Execution Object

EQ Event Queue

OpenEM Open Event Machine

PDSP Packed Data Structure Processor

PKTDMA PacKeT DMA

QMGR Queue ManaGeR

QMSS Queue Manager Sub-System

RTSC Real Time Software Component

6

2 Conventions

 “shall” (“must”, “needs”) is used to express an obligation.

 “should” is used to express a recommendation.

7

3 Scope

This document addresses release 1.6.0.2 and later of the Open Event Machine

(OpenEM).

8

4 Introduction

Purpose of the user’s guide is to provide examples of OpenEM usage for both DSP

and ARM.

All examples implement variants of an application parallelizing Fast Fourrier

Transform (FFT) operations.

This application contains a producer, several workers, several consumers and a

remote entity as shown in Figure 1.

consumer
consumer

producer consumerjobs

remote

workers results

statistics

Figure 1: High level block diagram

 The producer generates one sequence of MY_JOB_NUM jobs equally

distributed over MY_FLOW_NUM flows. One job triggers one complete FFT

operation. The input data of the FFT are stored in the job. The size of the FFT

is a power of two randomly distributed between MY_FFT_SIZE_MIN and

MY_FFT_SIZE_MAX. The size of the FFT is also stored in the job. There is

no dependency between jobs. Once all jobs have been generated, the producer

becomes a worker.

 The workers are inactive during the complete duration of jobs generation. The

workers consume the jobs, compute the FFTs and forward the results to the

consumers. They generate statistics that are stored in a shared memory. Once

activated, the workers are asynchronous. A worker is allowed to consume jobs

from any flow.

 The consumers are inactive during the complete duration of FFTs

computation. They consume and process the FFT results. In the example, this

processing checks that the FFT results are correct. Once activated, the

consumers are asynchronous.

 The remote entity is inactive during the complete duration of FFT results

checking operation. It processes the job statistics from the shared memory.

9

5 Installing OpenEM

This section of the document details the procedure to install the OpenEM when it is

delivered as a standalone package. Check the OpenEM release notes document to get

the versions of the other TI tools that are required to be installed. This installation

procedure is not required when the OpenEM is delivered through a MCSDK package.

On Windows platforms, OpenEM is delivered with the

“openem_w_x_y_z_k1_SetupWin32.exe” installer file for Keystone I devices and

“openem_w_x_y_z_k2_SetupWin32.exe” installer file for Keystone II devices.

On Linux platforms, OpenEM is delivered with the “openem_w_x_y_z_k1_Linux-

x86_Install.bin” installer file for Keystone I devices and

“openem_w_x_y_z_k2_Linux-x86_Install.bin” installer file for keystone II devices.

The following installation procedure applies to the OpenEM 1.0.0.2 on Keystone II

devices.

When executing the installer on a Windows platform, the following InstallJammer

Wizard starts:

10

 It indicates the version of the OpenEM it is installing. Click on Next.

 Select “I accept the terms of the license agreement.” and click on Next.

11

 Select the destination folder for the OpenEM and click on Next.

12

 Check the summary of information and click on Next.

 The OpenEM is now installed, click on Finish.

13

6 OpenEM on DSP

This section of the document details how to configure the examples on Code

Composer Studio (CCS).

6.1 Installing OpenEM in CCS

Start CCS. Select your workspace.

 If the automatic “new product detection” is not activated, go to window ->

preferences, then Code Composer Studio -> RTSC -> Products. The following

window shall appear. OpenEM is not listed in the Discovered tools.

14

 Check the Tool discovery path is correctly set to the OpenEM package path or add

it, click on Refresh.

15

 CCS detects the OpenEM as a new product. Click on Finish. If the automatic

“new product detection” is activated, this window pops up automatically when the

Tool discovery path is correctly set to the OpenEM package path.

16

 Click on Yes to restart CCS.

17

 CCS now recognizes the OpenEM as a valid RTSC package to be used in projects.

18

6.2 Managing examples in CCS

Following procedure details how to import, build and run an example project in CCS.

Same procedure applies to all examples.

6.2.1.1 Import projects

To import the project in CCS:

 In CCS, click on the menu “File -> Import…”, Select “Code Composer Studio

-> Existing CCS/CCE Eclipse Projects” and click on Next.

 Click on the “Browse” button next to “Select search-directory”, select the

example directory under

“C:\ti\openem_w_x_y_z\packages\ti\runtime\openem\dsp\examples”. The

project appears in the “Discovered projects” tab. Make sure it is selected and

click on Finish.

 The project now appears in the “Project Explorer” tab of the “C/C++ Edit”

perspective as a RTSC project and is ready to be configured and built.

6.2.1.2 Build Project

To configure the project for the build:

 To select the active build configuration, right click on the project name ->

properties, then, click on Manage Configurations..., and select the build

configuration (Debug, Release), click on Set Active and click OK.

 Ensure the correct versions of the PDK and OpenEM RTSC packages are selected

by right clicking on project name -> properties -> General -> RTSC.

 Ensure the correct memory platform is selected by right clicking on project name -

> properties -> General ->RTSC. For an unknown reason, it is possible the

required memory platform does not appear in the drop down menu, in which case

the memory platform name is of the form

“ti.runtime.openem.dsp.examples.platforms.c6678_ex0”.

 Ensure the symbolic constants in the file “my_event_machine.h” are correctly set

and save the file. Those constants are part of the application and configure the

OpenEM inline functions.

 Ensure the OpenEM is correctly configured.

 Right click on the file Example.cfg -> Open With -> XGCONF, this will

make the “Available Products” tab to appear in CCS.

19

 In this tab, click on the arrows next to Other Products->openem_x_y_z_w-

>ti->runtime->openem.

 Click on Settings, this will make the Example.cfg->Settings tab to appear.

 Set the correct values for the debugFlag and the targetFlag and save.

To proceed through the build of the project:

 Clean the project by right clicking on Example_0 -> Clean Project.

 Build the project by right clicking on Example_0 -> Build Project.

The build generates a binary file under Binaries and a build directory.

6.2.1.3 Run project

The run procedure of the project is the standard procedure, it requires selecting a

ccxml file, connecting the target, loading the program and running the program.

6.3 Examples

The implementation of the OpenEM examples requires memory allocation,

configuration and initialization of the OpenEM process, creation and activation of the

OpenEM objects.

6.3.1 Abstraction layer

In order to hide to the user the complexity of initializing the QMSS, PKTDMA and

OpenEM, a software abstraction layer is provided with the examples. The user

configures a set of OpenEM parameters that allows the abstraction layer to initialize

the QMSS, PKTDMA and OpenEM entities. The abstraction layer is part of each

example code and is not part of the OpenEM library.

The abstraction layer provides three structures to be configured and three public APIs

to be called by the user to fully manage the QMSS, PKTDMA and OpenEM entities.

 ti_em_pool_config2_t

 ti_em_pl_pool_config2_t

 ti_em_hw_config2_t

 ti_em_init_global2()

 ti_em_init_local2()

20

 ti_em_exit_global2()

The abstraction layer sets the value of the constant TI_EM_EVENT_NUM2 as the

max number of events allocated in parallel from all application event pools (in

Example_0, there are two application event pools, the public event pool and the exit

event pool).

The abstraction layer sets the value of the constant Emti_LOCAL_EVENT_NUM as

the number of events of the preload event pools.

The abstraction layer assumes the memory sections listed in 6.3.3.3 are mapped on the

memory areas listed in 6.3.3.1.

The abstraction layer instantiates and manages the arrays of event descriptors used by

the OpenEM for the job processing.

The abstraction layer does not instantiate the array of event buffers because there

sizes are application specific.

6.3.1.1.1 ti_em_pool_config2_t

This structure contains the parameters required by the abstraction layer to configure a

public event pool. Figure 2 shows the ti_em_pool_config2_t prototype.

Figure 2: ti_em_pool_config2_t

 event_num

o Number of events in the event pool.

 buffer_ptr

o Pointer to the array of event buffers attached to the event pool when

the event pool buffer mode is set to

21

TI_EM_BUF_MODE_GLOBAL_TIGHT. It is set to NULL the event

pool buffer mode is set to TI_EM_BUF_MODE_GLOBAL_LOOSE.

 buffer_size

o Size of one event buffer in bytes. It is set to 0 when the buffer_ptr is

set to NULL.

 ps_word_num

o Number of protocol specific word. Refer to the QMSS and CPPI

specifications for details.

 free_policy

o Event free policy. Refer to the QMSS and CPPI specifications for

details.

 pool_config

o OpenEM event pool configuration. Refer to the OpenEM API

specification for details.

6.3.1.1.2 ti_em_pl_pool_config2_t

This structure contains the parameters required by the abstraction layer to configure a

preload event pool. Figure 3 shows the ti_em_pl_pool_config2_t prototype.

Figure 3: ti_em_pl_pool_config2_t

 core_idx

o Dispatcher core index.

 event_num

o Number of events supported by the preload event pool.

 buffer_ptr

o Pointer to the array of event buffers attached to the preload event pool.

 buffer_size

22

o Size of one event buffer in bytes.

 ps_word_num

o Number of protocol specific word. Refer to the QMSS and CPPI

specifications for details.

 free_queue_idx

o QMSS general purpose hardware queue index allocated to the preload

event pool. Free events are stored in the preload event pool free queue.

6.3.1.1.3 ti_em_hw_config2_t

This structure contains the parameters required by the abstraction layer to configure

the OpenEM. Figure 3 shows the ti_em_hw_config2_t prototype.

Figure 4: ti_em_hw_config2_t

 ap_private_free_queue_idx

o Index of the QMSS general purpose hardware queue containing the

private events used for Atomic Processing. This queue shall contain at

least 256 private events.

 cd_private_free_queue_idx

o Index of the QMSS general purpose hardware queue containing the

private events used for Command Processing. This queue shall contain

at least 32 private events. This index can be the same as

ap_private_free_queue_idx.

 hw_queue_base_idx

o Base index for the TI_EM_HW_QUEUE_NUM contiguous QMSS

general purpose hardware queues required by the OpenEM.

 hw_sem_idx

o Index of the OpenEM hardware semaphore.

23

 dma_queue_base_idx

o Base index for the TI_EM_DMA_TX_QUEUE_NUM contiguous

infrastructure PKTDMA hardware transmit queues.

 preload_size_a

o Preload size A.

 preload_size_b

o Preload size B.

 preload_size_c

o Preload size C.

6.3.1.1.4 ti_em_init_global2()

Purpose of ti_em_init_global2() is to configure the QMSS and PKTDMA hardware IP

blocks and to initialize the QMSS, PKTDMA and OpenEM global shared variables.

It shall be called one and only one time by the master core.

ti_em_init_global2() gathers all parameters the user shall configure to initialize the

OpenEM.

Figure 5 shows the prototype of ti_em_init_global2().

Figure 5: ti_em_init_global2()

ti_em_init_global2() requires the following parameters to be provided:

 region_num

24

o Number of QMSS memory regions the application uses for its

processing. It does not include the QMSS memory regions required by

the OpenEM.

 region_config_tbl

o Table of parameters to configure the memory regions the application

uses for its processing. Qmss_MemRegInfo is detailed in QMSS LLD

API specifications. If region_num is set to 0, this parameter is set to

NULL.

 pdsp_num

o Number of PDSPs the application uses for its processing. It does not

include the PDSPs required by the OpenEM.

 pdsp_config_tbl

o Table of parameters to configure the PDSPs the application uses for its

processing. Qmss_PdspCfg is detailed in QMSS LLD API

specification. If pdsp_num is set to 0, this parameter is set to NULL.

 pool_num

o Number of application event pools. It does not include the event pools

required for the preloading of the events.

 pool_config2_tbl

o Table of parameters to configure the application event pools.

 core_num

o Number of cores involved in the dispatching of events.

 pl_pool_config2_tbl

o Table of parameters to configure the preloading event pools.

 hw_config2

o Set of parameters to configure the OpenEM.

6.3.1.1.5 ti_em_init_local2()

Purpose of ti_em_init_local2() is to initialize the QMSS, PKTDMA and OpenEM

local variables on each core dispatching events. It shall be called one and only one

time per core after the ti_em_init_global2() is complete on the master core. It does not

require input parameters.

Figure 6 shows the ti_em_init_local2() prototype.

25

Figure 6: ti_em_init_local2()

6.3.1.1.6 ti_em_exit_global2()

Purpose of ti_em_exit_global2() is to close the QMSS, CPPI and OpenEM software

objects and to release the hardware resources used by the OpenEM.

It shall be called one and only one time by the master core.

Figure 5 shows the prototype of ti_em_exit_global2().

Figure 7: ti_em_exit_global2()

6.3.2 File organization

Most of the example files have been named to identify their content. Groups of files

are dedicated to the initialization abstraction layer (ref. 6.3.3), to the OpenEM

initialization and to the application.

 The files dedicated to the abstraction layer are prefixed with “ti_em_”. The

user should not modify these files.

 The files dedicated to the OpenEM initialization are prefixed with “my_em_”.

Variables required by the OpenEM, but that are dependent on the application

(e.g. “my_em_svProcEventBufMem[]”) are listed in these files. Also, all

symbolic constants required by the OpenEM are listed in these files.

 Most of the files dedicated to the Application are prefixed by “my_”. Files

related to the FFT processing are not prefixed.

 The other files

26

o my_event_machine.h is required and contains symbolic constants for

configuring the OpenEM. It can be modified by the application.

o qmss_device.c and cppi_device.c are required to build the Example_0

for Keystone I devices. For Keystone II devices, original PDK files are

included from ti_em_init.c. They contain the device specific

configuration for the QMSS and CPPI Low Level Drivers.

o osal.c contains an Operating System Adaptation layer which is used by

the QMSS and CPPI low level driver.

o em_pdk_hal.c contains the implementation of the OpenEM functions

pointers to abstract the QMSS and CPPI low level drivers.

o Example_x.cfg contains the memory configuration for example “x”.

 It defines and maps the example memory sections on the

memory areas defined in the memory platforms.

 It lists and configures the RTSC modules the project is

dependent on.

 xdc.useModule(‘ti.csl.Settings’);

 xdc.useModule(‘ti.drv.cppi.Settings’);

 xdc.useModule(‘ti.drv.qmss.Settings’);

 xdc.useModule(‘ti.runtime.openem.Settings’);

6.3.3 Memory management

The OpenEM examples requires local versus shared and cached versus non cached

memories to be allocated. For that purpose, memory areas are created and memory

sections are mapped to these memory areas.

These memory sections are either:

 predefined by the QMSS, PKTDMA and OpenEM libraries,

 predefined by the abstraction layer,

 defined by the application.

6.3.3.1 Memory areas

A set of custom memory areas is created to manage “internal” versus “external”

memories and cached versus non cached memories.

These memory areas are defined in the memory platforms delivered along with the

OpenEM package in directory

27

$(OpenEMRootDirectory)\packages\ti\runtime\openem\dsp\examples\platforms. For

Example_x, memory platform are post fixed “_exx”.

Memory areas are:

 L1PSRAM

o Used as cache memory, no length defined.

 L1DSRAM

o Used as cache memory, no length defined.

 L2SRAM

o memory : UMC RAM

o cache : enabled

 MSMCSRAM

o memory : MSMC RAM

o cache : enabled

 MSMCSRAM_NC

o memory : MSMC RAM

o cache : disabled

 DDR3

o memory : DDR3

o cache : enabled

 DDR3_NC

o memory : DDR3

o cache : disabled

 PDSP1D

o memory : PDSP1 RAM

o cache : NA

 PDSP2D

o memory : PDSP2 RAM

o cache : NA

 PDSP3D

o Keystone II only

o memory : PDSP3 RAM

o cache : NA

 PDSP4D

o Keystone II only

o memory : PDSP4 RAM

o cache : NA

 PDSP5D

o Keystone II only

o memory : PDSP5 RAM

o cache : NA

 PDSP6D

o Keystone II only

o memory : PDSP6 RAM

o cache : NA

 PDSP7D

o Keystone II only

28

o memory : PDSP7 RAM

o cache : NA

 PDSP8D

o Keystone II only

o memory : PDSP8 RAM

o cache : NA

 PDSPSH

o Keystone II only

o memory : PDSP shared RAM

o cache : NA

When using PDSP memory areas with DSP BIOS, it is mandatory to disable caching

and prefetching on MAR52 (0X34000000) for Keystone I devices and MAR35

(0x23000000) for Keystone II devices. Not doing so will result in unpredictable

behavior of the QMSS when pushing and popping descriptors to QMSS hardware

queues. In the examples, it is done at runtime when initializing memories.

6.3.3.2 Libraries memory sections

QMSS, PKTDMA and OpenEM libraries require their predefined memory sections to

be mapped to the custom memory areas listed above. These memory sections contain

dedicated shared variables and local variables that are declared, defined and used

within the scope of these libraries.

 QMSS

o .qmss

 memory: MSMCSRAM_NC

 PKTDMA

o .cppi

 memory: MSMCSRAM_NC

 OpenEM

o . tiEmGlobalFast

 memory: MSMCSRAM_NC

 size: my_em_getGlobalSizeFast()

o . tiEmGlobalSlow

 memory : DDR3_NC

 size: my_em_getGlobalSizeSlow()

o . tiEmLocal

 memory : L2SRAM

 size: my_em_getLobalSize()

29

6.3.3.3 Abstraction layer memory sections

The abstraction layer requires its predefined memory sections to be mapped to the

custom memory areas listed above.

 .tiEmSvPrivateEventDscMem1

o memory: PDSP1D

o size: TI_EM_PDSP_GLOBAL_DATA_SIZE

o alignment: CACHE_L2_LINESIZE

 .tiEmSvPrivateEventDscMem2

o memory: PDSP2D

o size: TI_EM_PDSP_GLOBAL_DATA_SIZE

o alignment: CACHE_L2_LINESIZE

 .tiEmSvPrivateEventDscMem3

o memory: PDSP3D

o size: TI_EM_PDSP_GLOBAL_DATA_SIZE

o alignment: CACHE_L2_LINESIZE

 .tiEmSvPrivateEventDscMem4

o memory: PDSP4D

o size: TI_EM_PDSP_GLOBAL_DATA_SIZE

o alignment: CACHE_L2_LINESIZE

 .tiEmSvPrivateEventDscMem5

o memory: PDSP5D

o size: TI_EM_PDSP_GLOBAL_DATA_SIZE

o alignment: CACHE_L2_LINESIZE

 .tiEmSvPrivateEventDscMem6

o memory: PDSP6D

o size: TI_EM_PDSP_GLOBAL_DATA_SIZE

o alignment: CACHE_L2_LINESIZE

 .tiEmSvPrivateEventDscMem7

o memory: PDSP7D

o size: TI_EM_PDSP_GLOBAL_DATA_SIZE

o alignment: CACHE_L2_LINESIZE

 .tiEmSvPrivateEventDscMem8

o memory: PDSP8D

30

o size: TI_EM_PDSP_GLOBAL_DATA_SIZE

o alignment: CACHE_L2_LINESIZE

 . tiEmSvPrivateEventDscMem

o Keystone II devices only

o memory: PDSPSH

o size: TI_EM_PDSP_GLOBAL_DATA_SIZE

o alignment: CACHE_L2_LINESIZE

 .tiEmSvPublicEventDscMem

o memory: MSMCSRAM_NC / DDR3_NC

o size: (1 + TI_EM_EVENT_NUM2) * MY_EM_PUBLIC_EVENT_DSC_SIZE

o The first descriptor of any memory region storing public and preload

events is reserved to the OpenEM usage.

o alignment: CACHE_L2_LINESIZE

 .tiEmGvLocalEventDscMem

o memory: L2SRAM

o size: (1 + Emti_LOCAL_EVENT_NUM) * MY_EM_PUBLIC_EVENT_DSC_SIZE

o The first descriptor of any memory region storing public and preload

events is reserved to the OpenEM usage.

o alignment: CACHE_L2_LINESIZE

6.3.3.4 Application memory sections

On top of its own memory sections dedicated to its own processing, the application

shall also map other additional memory sections dedicated to the OpenEM.

These memory sections contain the arrays of event buffers for both the public events

and the preload events. The size of the event buffers being application specific, these

sections cannot be transferred neither in the context of the OpenEM library, neither in

the context of the abstraction layer.

 .my_em_sv_ProcEventBufMem

o Location for the array of public event buffers

(my_em_svProcEventBufMem[])

o memory: MSMCRAM / MSMCRAM _NC / DDR3 / DDR3_NC

o size: MY_EM_EVENT_NUM * MY_EM_EVENT_BUF_SIZE

o alignment: CACHE_L2_LINESIZE

 .my_em_gvLocalEventBufMem

31

o Location for the array of preload event buffers

(my_em_gvPlEventBufMem[])

o memory: L2SRAM

o size: MY_EM_PL_EVENT_NUM * MY_EM_PL_EVENT_BUF_SIZE

o alignment: CACHE_L2_LINESIZE

6.3.4 Example_0

The Example_0 implements the application described in the introduction of the

document.

Figure 8 illustrates the Example_0 this implementation.

event pool

my_sourceJob()

Sink()
Sink()

Sink()
my_sinkJob()

Receive()
Receive()

Receive()
my_processJob()

em_free()

em_free()

em_alloc()em_alloc()

em_send()

em_send()

schedule

&

dispatch

schedule

&

dispatch

Proc Queue

(high priority)

Sink Queue

(low priority)

job event

result event

Producer

(master core)

Workers

(all cores)

Consumers

(all cores)

Figure 8 : OpenEM implementation

 The producer is a DSP core (master). It calls a function “my_sourceJob()” that

performs the complete jobs generation. For each job, “my_sourceJobs()” calls

“em_alloc()” to allocate an event from an event pool, fills the event buffers of

this event with control information and input data, calls “em_send()” to send

the event to one of the “Proc Queue” event queues (EQ). There is one “Proc

Queue” EQ per job flow.

 The workers are DSP cores. They consume the events coming from the “Proc

Queue” EQs. Upon reception of an event, a worker calls a function

“my_processJob()”. “my_processJob()” is the receive function of the

execution object (EO) linked to the “Proc Queue” EQs. “my_processJob()”

processes the FFT, calls “em_alloc()” to allocate a new event from the event

pool to stores the FFT results and calls “em_send()” to send this event to a

single “Sink Queue” EQ. It calls “em_free()” to free the received event.

32

 The consumers are DSP cores. They consume the events coming from the

“Sink Queue” EQ. Upon reception of an event, a consumer calls a function

“my_sinkJob()”. “my_sinkJob()” is the receive function of the EO linked to

the “Sink Queue” EQ. “my_sinkJob()” checks the correctness of the results. It

calls “em_free()” to free the received event.

 The remote entity is implemented by the master core. Statistics are processed

after the FFT results have been checked. It does not involve the OpenEM.

 Preloading mechanism is not illustrated on the figure.

On top of this implementation, an exit procedure based on the OpenEM has been

implemented. It is initiated by the master core after the statistics have been computed.

Figure 9 illustrates the exit procedure.

exit

event pool

my_em_exitGlobal()

Receive()
Receive()

Receive()
my_em_exitLocal()

em_free()

em_alloc()

em_send()

schedule

&

dispatch

Exit Queue

(low priority)

exit event

master core all cores

Figure 9 : Exit procedure

 The master core calls the function “my_em_exitGlobal()”.

“my_em_exitGlobal()” calls “em_alloc()” to allocate

(MY_EM_CORE_NUM-1) events from an exit event pool and calls

“em_send()” to send the events to a single “Exit Queue” EQ.

 The dispatcher cores consume the events coming from the “Exit Queue” EQ.

Upon reception of an event, a core calls a function “my_em_exitLocal()”.

“my_em_exitLocal()” is the receive function of the EO linked to the “Exit

Queue” EQ. “my_em_exitLocal()” exits the program.

 Once all dispatchers have exited the program, the master core also exits the

program.

This implementation requires the following OpenEM objects to be created by the

application:

 Events

33

o (2 * MY_JOB_NUM) events to store the input and output data of the

MY_JOB_NUM FFTs. They are called public events.

o (MY_EM_CORE_NUM – 1) events for the exit procedure. They are

called exit events.

 Event pools

o 1 public event pool to store the public events.

o 1 exit event pool to store the exit events.

 EOs

o 1 “Proc EO” EO associated to the “my_processJob()” receive function.

o 1 “Sink EO” EO associated to the “my_sinkJob()” receive function.

o 1 “Exit EO” EO associated to the “my_em_exitLocal()” receive

function.

 EQs

o MY_EM_PROC_QUEUE_NUM “Proc Queues” linked to the “Proc

EO” EO.

o 1 “Sink Queue” linked to the “Sink_EO” EO.

o 1 “Exit Queue” linked to the “Exit_EO” EO.

The Example_0 covers the following OpenEM features:

o Parallel or atomic event queues

o The “Proc Queue” event queues are created as parallel or atomic

queues according to the value of the symbolic constant

MY_EM_PROC_QUEUE_TYPE defined in my_em_init.h.

o Event preloading

o The overall mechanism for preloading is always configured in

Example_0.

o Preloading is enabled or disabled for the public events according to the

value of the symbolic constant MY_EM_PROC_EVENT_TYPE

defined in my_em_init.h.

o Multi-threaded scheduler

o The multi-threaded scheduler is configurable on Keystone II devices

only. A single scheduler is used for Keystone I devices.

34

o The number of scheduler threads is configured according to the value

of the symbolic constants MY_EM_SCHEDULER_THREAD_NUM

defined in my_em_init.h.

Figure 10, Figure 11 and Figure 12 show the main procedure of Example_0.

Figure 10: main() – 1/3

35

Figure 11: main() - 2/3

36

Figure 12: main() - 3/3

 All cores enter the initialization procedure.

 The master core initializes the application and sends the public events.

 All cores dispatch the public events.

 The master core computes the statistics.

 The master core enters the exit procedure.

6.3.4.1 Initialization procedure

The OpenEM initialization is divided in one global initialization and one local

initialization per core. It is simplified by the usage of the software abstraction layer

that handles most of the QMSS, PKTDMA and OpenEM initialization steps.

37

The application is responsible for instantiating the arrays of event buffers.

my_em_svProcEventBufMem[] and my_em_gvPlEventBufMem[] are instantiated in

the my_em_init.c file.

Figure 13: event buffer instantiations

In Example_0, the OpenEM initialization is located in my_init() and implemented by

two function calls my_em_initGlobal() and my_em_initLocal().

Figure 14 and Figure 15 show the implementation of my_init().

38

Figure 14: my_init() 1/2

39

Figure 15: my_init() 2/2

 my_em_initGlobal() is called on the master core.

 my_em_initLocal() is called on all cores after the global initialization is

complete.

6.3.4.1.1 OpenEM global initialization

In Example_0, the implementation of the OpenEM global initialization is performed

by my_em_initGlobal().

Figure 16 shows the implementation of my_em_initGlobal().

40

Figure 16: my_em_initGlobal()

 The three configuration structures of the abstraction layer are instantiated.

 my_em_initPoolConfig() configures the table of parameters for the public

event pools.

 my_em_initPlPoolConfig() configures the table of parameters for the preload

event pools.

41

 my_em_initHwConfig() configure the table of parameters of the OpenEM.

 ti_em_init_global2() is a call to the abstraction layer API that initializes the

QMSS, PKTDMA and OpenEM using the table of parameters previously

configured.

o No other QMSS memory regions are used by the application.

o No other PDSPs are used by the application.

o MY_EM_POOL_NUM application event pools are used by the

application.

o MY_EM_CORE_NUM cores are configured for event preloading.

6.3.4.1.1.1 my_em_initPoolConfig

This function configures the parameters for the two public event pools that the

application uses for the job processing.

Figure 17 shows the implementation of my_em_initPoolConfig().

42

Figure 17: my_em_initPoolConfig()

Though the “buf_mode” parameter is set to TI_EM_BUF_MODE_GLOBAL_TIGHT for the “Exit”

event pool, the buffer pointer for this pool is set to NULL. Therefore, events allocated

from this pool act as tokens.

6.3.4.1.1.2 my_em_initPlPoolConfig

Figure 18 shows the implementation of my_em_initPlPoolConfig().

43

Figure 18: my_em_initPlPoolConfig()

6.3.4.1.1.3 my_em_initHwConfig

Figure 19 shows the implementation of my_em_initHwConfig().

Figure 19: my_em_initHwConfig()

6.3.4.1.2 OpenEM local initialization

The local initialization is implemented by my_em_initLocal(). It calls

ti_em_init_local2() from the initialization abstraction layer.

44

Figure 20 shows the implementation of my_em_initLocal().

Figure 20: my_em_initLocal()

6.3.4.2 OpenEM objects creation

For the purpose of Example_0, several EOs, several EQs and one queue group shall

be created; there is no need for event groups. They are created by the master core at

the beginning of the scenario by calling my_initQueues(). Figure 21, Figure 22,

Figure 23 and Figure 24 show the implementation of my_initQueues()

These OpenEM objects are “semi static” objects in the sense that once created, they

cannot be deleted. Deleting them at runtime would require a synchronization

procedure between cores that is not implemented in the current version of the

OpenEM. Nevertheless, these objects can be created at any time during the life of the

application code.

45

Figure 21: my_em_initQueues() - 1/4

46

Figure 22: my_em_initQueues() - 2/4

47

Figure 23: my_em_initQueues() - 3/4

48

Figure 24: my_em_initQueues() - 4/4

6.3.4.2.1 EOs

EOs are created using em_eo_create(). EQs are added to the EOs using

em_eo_add_queue(), finally, EOs are started using em_eo_start().

When created and started, the EO is associated to a receive function that is executed

by one of the dispatcher cores after an event is pushed into one of the added EQs.

49

All EOs of Example_0 share the same global and local start and stop functions, but

they differ with their receive functions.

 "Proc EO"

o This EO is linked to the my_processJob() receive function. This

receive function executes in the following order:

 A prefetch request to the scheduler. When getting this prefetch

request, the scheduler prefetches the next event for this

dispatcher core and eventually preloads this event.

 If the preload is enabled, the receive function calls the

ti_em_claim_local() API to get access to the data preloaded in

the local event buffer.

 The allocation of a new event for storing the FFT results.

 The FFT processing.

 The dump of statistics data in shared memory.

 The free of the received event.

 The send of the new event into the “Sink Queue”.

o Figure 25, Figure 26, Figure 27 and Figure 28 show the

implementation of my_processJob().

50

Figure 25: my_processJob() - 1/4

51

Figure 26: my_processJob() - 2/4

52

Figure 27: my_processJob() - 3/4

53

Figure 28: my_processJob() - 4/4

 "Sink EO"

o This execution object is linked to the my_sinkJob() receive function.

This receive function executes in the following order:

 A prefetch request to the scheduler.

 The check of the FFT results.

 The free of the receive event.

 Decrements a shared “running jobs” counter. Access to this

shared variable is protected using a semaphore.

o Figure 1 and Figure 30 show the implementation of my_sinkJob().

54

Figure 29: my_sinkJob() – 1/2

55

Figure 30: my_sinkJob() – 2/2

 "Exit EO"

56

o This execution object is linked to the my_em_exitLocal() receive

function. This receive function exists the dispatcher core.

o Figure 31 shows the implementation of my_em_exitLocal().

Figure 31: my_em_exitLocal()

6.3.4.2.2 EQs

EQs created by the application are logical queues, not QMSS hardware queues.

Therefore, the application can create several thousands of EQs. Ultimately, the EQs

are mapped to the QMSS hardware queues according to their priorities and core

masks.

EQs are created using em_queue_create(). Then they must be added to an EO before

they can be used.

An EQ belongs to a queue group to which is attached a core mask. This core mask

allows selecting which dispatcher cores will be eligible for getting events from this

EQ. Queue groups are dynamically created, excepted for the default queue group that

exists by default. The default queue group is “all cores eligible” to the EQ. An EQ can

be parallel or atomic. An EQ has a priority.

EQs created for the purpose of Example_0 are:

 "Proc Queue"

o MY_EM_PROC_QUEUE_NUM “Proc Queue” EQs are created.

o These EQs are of type MY_EM_PROC_QUEUE_TYPE that is

configured as parallel or atomic at compile time.

57

o They are queues with the high priority.

o They belong to the default queue group enabling all dispatcher cores to

dispatch events from these EQs.

o They are added to the "Proc EO" EO, meaning an event pushed into

one of these EQs will trigger a call to my_receiveJob().

 "Sink Queue"

o One “Sink Queue” EQ is created.

o This EQ is a parallel EQ.

o It is a queue with the low priority.

o It belongs to the default queue group.

o It is added to the "Sink EO" EO, meaning an event pushed into this EQ

will trigger a call to my_sinkJob().

 "Exit Queue"

o One “Exit Queue” EQ is created.

o This EQ is an atomic EQ.

o It is a queue with the lowest priority.

o It belongs to the “Exit_Queue_Group” queue group.

o It is added to the “Exit EO" EO, meaning an event pushed into this EQ

will trigger a call to my_em_exitLocal().

6.3.4.2.3 OpenEM activation

Activating the OpenEM means allocating and sending events to the EQs and

configuring cores as dispatchers to process these events.

In Example_0, the allocation and send of the first set of events, corresponding to the

jobs creation of Figure 1, is performed in my_sourceJobs() by the master core.

Figure 32, Figure 33 and Figure 34 show the implementation of my_sourceJobs().

58

Figure 32: my_sourceJobs() – 1/3

59

Figure 33: my_sourceJobs() - 2/3

60

Figure 34: my_sourceJobs() - 3/3

Once my_sourceJobs returns, the master core becomes a dispatcher core. As for the

other dispatcher cores, it first calls ti_em_preschedule() to request an event from the

OpenEM scheduler, then it calls ti_em_dispatch_once() to dispatch and process an

event scheduled by the OpenEM scheduler.

The activation of the dispatcher cores is performed in main().

61

6.3.4.3 Summary

Listed below are the symbolic constants, variables and functions to be implemented to

run Example_0 with OpenEM.

6.3.4.3.1 Symbolic constants

o MY_EM_CORE_NUM (TI_EM_CORE_NUM)

o Number of cores involved with the OpenEM, TI_EM_CORE_NUM is

an OpenEM symbolic constant.

o Set to 4 when using C6670

o MY_EM_INIT_CORE_IDX (0)

o Master core Index

o Hard coded to core 0 for Example_0 as for the exit procedure, the

queue group does not include core 0.

o MY_EM_PROC_QUEUE_NUM (32)

o Number of high priority parallel “Proc Queue” EQs that need to be

created.

o MY_EM_PROC_QUEUE_TYPE (EM_QUEUE_TYPE_PARALLEL)

o Type of the MY_EM_PROC_QUEUE_NUM Proc Queue” EQs.

o MY_EM_PROC_EVENT_TYPE

(TI_EM_EVENT_TYPE_PRELOAD_ON_SIZE_C)

o Type of the events that are allocated in my_sourceJobs() when creating

the jobs. It indicates event preloading is enabled.

o MY_EM_PUBLIC_EVENT_DSC_SIZE (64)

o Size of the event descriptors in bytes. This value is used to dimension

the array of descriptors.

o MY_EM_POOL_NUM (2)

o Number of event pools required by the application. One is the public

event pool containing all the events involved in the job processing. The

other is the exit event pool to exit the application.

62

o MY_EM_POOL_IDX (0)

o Index of the public event pool containing the public event involved in

the job processing.

o MY_EM_EVENT_NUM (2048)

o Number of public events in the public event pool.

o MY_EM_EVENT_BUF_SIZE (32*1024+CACHE_L2_LINESIZE)

o Public event buffer size of the public events of the public event pool.

o MY_EM_BUF_MODE (TI_EM_BUF_MODE_GLOBAL_TIGHT)

o Public event pool buffer mode.

o MY_EM_COH_MODE (TI_EM_COH_MODE_ON)

o Public event pool coherency mode.

o MY_EM_EXIT_POOL_IDX (1)

o Index of the exit event pool.

o MY_EM_EXIT_EVENT_NUM (MY_EM_CORE_NUM)

o Number of exit events in the exit event pool.

o MY_EM_PRELOAD_SIZE_A (256)

o Number of bytes for the preload size A

o MY_EM_PRELOAD_SIZE_B (2*1024)

o Number of bytes for the preload size B

o MY_EM_PRELOAD_SIZE_C (64*1024)

o Number of bytes for the preload size C

o MY_EM_ PRELOAD_EVENT_NUM (2)

o Number of preload events in the preload event pool. This value is

hardcoded and cannot be changed by the user.

63

o MY_EM_ PRELOAD_EVENT_BUF_SIZE (MY_EM_PRELOAD_SIZE_C)

o Preload event buffer size of the preload events of the preload event

pool.

o MY_EM_AP_PRIVATE_FREE_QUEUE_IDX (1022)

o Index of the QMSS general purpose hardware queue containing the

private events used for Atomic Processing. This queue shall contain at

least 256 private events.

o MY_EM_CD_PRIVATE_FREE_QUEUE_IDX (1023)

o Index of the QMSS general purpose hardware queue containing the

private events used for Command Processing. This queue shall contain

at least 32 private events. This index can be the same as

MY_EM_AP_PRIVATE_FREE_QUEUE_IDX.

o MY_EM_HW_QUEUE_BASE_IDX (1024)

o QMSS general purpose queue base index for OpenEM internal

processing. It shall be aligned on multiple of 128.

o MY_EM_FREE_QUEUE_BASE_IDX (2048)

o QMSS general purpose queue base index for the application event

pools. These queues store the free events before they are allocated by

the application.

o MY_EM_ PRELOAD_FREE_QUEUE_BASE_IDX

(MY_EM_FREE_QUEUE_BASE_IDX + MY_EM_POOL_NUM)

o QMSS general purpose queue base index for the preload event pools.

o MY_EM_DMA_QUEUE_BASE_IDX (0)

o Relative QMSS transmit queues base index for preloading.

o MY_EM_HW_SEM_IDX (3)

o OpenEM hardware semaphore.

o TI_EM_EVENT_NUM2 (MY_EM_EXIT_EVENT_NUM +

MY_EM_EXIT_EVENT_NUM)

o Total number of application events the application can allocate in

parallel from the application event pools. This constant is required by

the abstraction layer.

64

6.3.4.3.2 Variables and arrays

The application is responsible for instantiating the arrays of event buffers:

o my_em_svProcEventBufMem[MY_EM_EVENT_NUM * MY_EM_EVENT_BUF_SIZE]

o Array of application event buffers

o my_em_gvPlEventBufMem[MY_EM_PL_EVENT_NUM * MY_EM_PL_EVENT_BUF_SIZE]

o Array of preload event buffers

6.3.4.3.3 Functions

o em_status_t ti_em_init_global2()

o Global initialization of the OpenEM.

o em_status_t ti_em_init_local2(void)

o Local initialization of the OpenEM.

o em_status_t ti_em_exit_global2(void)

o Global exit of the OpenEM.

o my_em_initQueues()

o Create all OpenEM objects involved in the application processing

o my_processJobs(), my_sinkJobs(), my_em_exitLocal()

o Application receive functions associated to the EOs created by

my_em_initQueues()

o my_sourceJobs()

o Allocates and sends public events to the OpenEM.

6.3.4.4 Outputs

Complete logs are provided below for several configurations.

65

o Each core returns

o The total number of jobs it has processed.

o The number of jobs per flow.

o The Min/Mean/Max number of cycles to perform the job processing.

o The Min/Mean/Max number of cycles consumed by the dispatcher.

o The OpenEM handles the event buffer cache coherency.

6.3.4.4.1 Parallel queues – preload size (64*1024) – 1 scheduler thread

This test-case uses the following configuration:
 - my_device_idx : 0
 - my_process_idx : 0
 - nb scheduler pdsp : 1
 - thread #0 on pdsp : 0
 - AP private_free_queue: 1022
 - CD private_free_queue: 1023
 - hw_queue_base_idx : 1024
 - dma_queue_base_idx : 0
 - pool_num : 2
Init Done

==========
data check OK!

Statistics for core 0:
Number of jobs : 123
Number of jobs per flow: 3 4 6 7 2 4 2 5 2 4 3 5 2 3 2 4 2 4 5 3 6 5 3 4 3
3 4 3 7 5 4 4
Min/mean/max processing cycles : 5471/32323/78992
Min/mean/max overhead cycles : 2283/8378/37857

Statistics for core 1:
Number of jobs : 130
Number of jobs per flow: 4 4 4 7 5 5 3 4 4 4 2 4 3 2 7 3 5 2 5 4 6 2 3 7 6
3 6 4 3 4 2 3
Min/mean/max processing cycles : 5430/30542/78520
Min/mean/max overhead cycles : 2263/8119/40714

Statistics for core 2:
Number of jobs : 129
Number of jobs per flow: 4 4 2 2 2 2 8 4 5 2 2 3 5 9 4 4 4 6 2 2 4 4 7 3 4
4 5 6 5 3 4 4
Min/mean/max processing cycles : 5411/30199/78736
Min/mean/max overhead cycles : 2283/8645/38105

Statistics for core 3:
Number of jobs : 136

66

Number of jobs per flow: 5 6 2 2 4 5 4 8 3 4 3 3 5 3 5 2 4 5 6 5 7 3 4 4 4
4 3 8 4 1 5 5
Min/mean/max processing cycles : 5437/28737/77862
Min/mean/max overhead cycles : 2263/8639/32373

Statistics for core 4:
Number of jobs : 135
Number of jobs per flow: 3 2 6 4 7 4 5 2 8 5 8 5 5 4 3 5 3 2 6 5 1 6 4 2 3
3 3 2 4 6 4 5
Min/mean/max processing cycles : 5458/29398/76708
Min/mean/max overhead cycles : 2251/8221/31733

Statistics for core 5:
Number of jobs : 125
Number of jobs per flow: 3 5 7 3 5 3 5 4 4 4 3 5 5 4 5 4 6 3 4 3 3 3 3 3 3
3 5 5 2 3 4 3
Min/mean/max processing cycles : 5445/31226/78564
Min/mean/max overhead cycles : 2261/9250/37216

Statistics for core 6:
Number of jobs : 112
Number of jobs per flow: 4 5 3 4 3 5 1 2 4 4 3 4 3 2 3 4 4 4 2 4 2 6 3 7 5
4 2 2 4 2 5 2
Min/mean/max processing cycles : 5589/35195/78324
Min/mean/max overhead cycles : 2315/10184/36483

Statistics for core 7:
Number of jobs : 134
Number of jobs per flow: 6 2 2 3 4 4 4 3 2 5 8 3 4 5 3 6 4 6 2 6 3 3 5 2 4
8 4 2 3 8 4 6
Min/mean/max processing cycles : 5367/29065/79182
Min/mean/max overhead cycles : 2261/8541/30645

Statistics for all cores
Total number of jobs: 1024
Total number of jobs per flow: 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
Min/mean/max processing cycles : 5367/30721/79182
Min/mean/max overhead cycles : 2251/8718/40714

Start/stop/run cycles: 61441377/83040250/21598873
Debug(Core 0): <CompletionTag> Example #0 passed.

==========

6.3.4.4.2 Atomic queues – preload size (64*1024) – 1 scheduler thread

This test-case uses the following configuration:
 - my_device_idx : 0
 - my_process_idx : 0
 - nb scheduler pdsp : 1

67

 - thread #0 on pdsp : 0
 - AP private_free_queue: 1022
 - CD private_free_queue: 1023
 - hw_queue_base_idx : 1024
 - dma_queue_base_idx : 0
 - pool_num : 2
Init Done

==========
data check OK!

Statistics for core 0:
Number of jobs : 128
Number of jobs per flow: 0 0 0 0 0 0 32 0 0 0 0 32 0 0 0 0 0 32 0 0 0 0 0 0
0 32 0 0 0 0 0 0
Min/mean/max processing cycles : 5477/29779/75840
Min/mean/max overhead cycles : 2289/9614/33311

Statistics for core 1:
Number of jobs : 128
Number of jobs per flow: 32 0 0 0 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 32
0 0 0 0 0 32 0 0
Min/mean/max processing cycles : 5541/29537/76492
Min/mean/max overhead cycles : 2263/9404/98521

Statistics for core 2:
Number of jobs : 128
Number of jobs per flow: 0 0 32 0 0 0 0 0 32 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0
0 0 32 0 0 0 0 0
Min/mean/max processing cycles : 5365/28332/75520
Min/mean/max overhead cycles : 2267/9476/94877

Statistics for core 3:
Number of jobs : 128
Number of jobs per flow: 0 0 0 0 0 0 0 32 0 0 0 0 0 0 32 0 0 0 0 0 0 0 32 0
0 0 0 0 0 0 32 0
Min/mean/max processing cycles : 5473/31841/77854
Min/mean/max overhead cycles : 2255/9730/56523

Statistics for core 4:
Number of jobs : 128
Number of jobs per flow: 0 32 0 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 32 0 0
0 0 0 0 0 0 0 32
Min/mean/max processing cycles : 5413/33339/78114
Min/mean/max overhead cycles : 2269/10316/83855

Statistics for core 5:
Number of jobs : 128
Number of jobs per flow: 0 0 0 32 0 0 0 0 0 0 32 0 0 0 0 0 0 0 32 0 0 0 0 0
32 0 0 0 0 0 0 0
Min/mean/max processing cycles : 5443/30416/76502
Min/mean/max overhead cycles : 2300/9286/81657

68

Statistics for core 6:
Number of jobs : 128
Number of jobs per flow: 0 0 0 0 32 0 0 0 0 32 0 0 0 0 0 0 0 0 0 32 0 0 0 0
0 0 0 32 0 0 0 0
Min/mean/max processing cycles : 5365/29563/76584
Min/mean/max overhead cycles : 2273/9137/38183

Statistics for core 7:
Number of jobs : 128
Number of jobs per flow: 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 32 0 0 0 0 32 0 0 0
0 0 0 0 32 0 0 0
Min/mean/max processing cycles : 5393/32405/80924
Min/mean/max overhead cycles : 2253/9463/44483

Statistics for all cores
Total number of jobs: 1024
Total number of jobs per flow: 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
Min/mean/max processing cycles : 5365/30651/80924
Min/mean/max overhead cycles : 2253/9553/98521

Start/stop/run cycles: 61522296/79139376/17617080
Debug(Core 0): <CompletionTag> Example #0 passed.

==========

6.3.4.4.3 Parallel queues – preload off – 1 scheduler thread

This test-case uses the following configuration:
 - my_device_idx : 0
 - my_process_idx : 0
 - nb scheduler pdsp : 1
 - thread #0 on pdsp : 0
 - AP private_free_queue: 1022
 - CD private_free_queue: 1023
 - hw_queue_base_idx : 1024
 - dma_queue_base_idx : 0
 - pool_num : 2
Init Done

==========
data check OK!

Statistics for core 0:
Number of jobs : 130
Number of jobs per flow: 5 3 1 7 4 3 4 2 4 3 9 7 2 4 4 4 4 4 1 4 3 5 3 4 3
5 6 3 4 5 5 5
Min/mean/max processing cycles : 6013/33879/88422
Min/mean/max overhead cycles : 2711/6123/12570

Statistics for core 1:
Number of jobs : 114

69

Number of jobs per flow: 6 5 4 4 2 3 5 3 5 1 4 4 3 4 1 3 8 3 3 4 4 2 4 7 2
5 2 1 4 2 3 3
Min/mean/max processing cycles : 6343/38430/89832
Min/mean/max overhead cycles : 2681/6679/13592

Statistics for core 2:
Number of jobs : 133
Number of jobs per flow: 3 3 7 4 6 3 4 5 4 2 6 5 4 4 5 5 4 3 7 6 2 7 5 6 5
3 2 2 3 2 3 3
Min/mean/max processing cycles : 6111/32538/85768
Min/mean/max overhead cycles : 2681/6046/15018

Statistics for core 3:
Number of jobs : 141
Number of jobs per flow: 3 5 3 4 3 6 4 3 5 5 2 3 3 3 6 3 6 5 4 5 2 4 3 4 10
7 3 5 4 8 5 5
Min/mean/max processing cycles : 6211/30396/84664
Min/mean/max overhead cycles : 2679/5839/16640

Statistics for core 4:
Number of jobs : 129
Number of jobs per flow: 3 7 3 3 4 5 7 6 3 4 2 1 6 5 5 5 2 4 4 3 3 3 3 2 4
2 10 6 4 1 5 4
Min/mean/max processing cycles : 6149/33033/86036
Min/mean/max overhead cycles : 2687/6545/16260

Statistics for core 5:
Number of jobs : 134
Number of jobs per flow: 5 3 7 4 3 6 3 5 2 4 2 6 4 5 3 6 1 5 1 5 6 4 4 2 3
4 5 9 4 5 4 4
Min/mean/max processing cycles : 6169/32112/85879
Min/mean/max overhead cycles : 2685/6514/17361

Statistics for core 6:
Number of jobs : 121
Number of jobs per flow: 3 2 5 3 5 2 4 5 2 6 4 1 6 4 5 2 6 2 6 3 7 5 4 3 3
2 3 3 5 4 3 3
Min/mean/max processing cycles : 6021/35673/92994
Min/mean/max overhead cycles : 2683/7120/16820

Statistics for core 7:
Number of jobs : 122
Number of jobs per flow: 4 4 2 3 5 4 1 3 7 7 3 5 4 3 3 4 1 6 6 2 5 2 6 4 2
4 1 3 4 5 4 5
Min/mean/max processing cycles : 6275/35197/90976
Min/mean/max overhead cycles : 2683/6875/19778

Statistics for all cores
Total number of jobs: 1024
Total number of jobs per flow: 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
Min/mean/max processing cycles : 6013/33763/92994

70

Min/mean/max overhead cycles : 2679/6447/19778

Start/stop/run cycles: 61428809/80746445/19317636
Debug(Core 0): <CompletionTag> Example #0 passed.

==========

6.3.4.4.4 Parallel queues – preload off – 4 scheduler threads

==========
This test-case uses the following configuration:
 - my_device_idx : 0
 - my_process_idx : 0
 - nb scheduler pdsp : 4
 - thread #0 on pdsp : 0
 - thread #1 on pdsp : 1
 - thread #2 on pdsp : 2
 - thread #3 on pdsp : 3
 - AP private_free_queue: 1022
 - CD private_free_queue: 1023
 - hw_queue_base_idx : 1024
 - dma_queue_base_idx : 0
 - pool_num : 2
Init Done

==========
data check OK!

Statistics for core 0:
Number of jobs : 137
Number of jobs per flow: 4 6 4 6 5 3 7 7 4 3 7 3 4 5 4 5 2 3 4 5 2 4 4 3 3
4 3 4 4 7 3 5
Min/mean/max processing cycles : 6161/31144/84086
Min/mean/max overhead cycles : 2715/5844/11815

Statistics for core 1:
Number of jobs : 130
Number of jobs per flow: 4 4 4 4 3 3 6 4 5 1 4 7 3 5 4 5 2 3 6 7 5 5 2 3 3
3 7 4 4 3 3 4
Min/mean/max processing cycles : 6085/33484/90643
Min/mean/max overhead cycles : 2685/6164/12383

Statistics for core 2:
Number of jobs : 128
Number of jobs per flow: 3 5 3 4 5 4 4 4 5 7 5 1 6 5 2 5 6 3 5 3 4 2 3 5 2
7 3 5 3 1 5 3
Min/mean/max processing cycles : 6145/33682/83529
Min/mean/max overhead cycles : 2677/6199/13047

Statistics for core 3:
Number of jobs : 123
Number of jobs per flow: 5 3 5 2 3 5 3 2 5 7 2 2 4 4 3 3 3 7 7 6 3 5 4 4 5
5 2 3 2 3 4 2
Min/mean/max processing cycles : 6263/34955/83293

71

Min/mean/max overhead cycles : 2679/6443/15181

Statistics for core 4:
Number of jobs : 127
Number of jobs per flow: 3 5 4 7 3 5 5 2 3 4 1 7 4 3 5 3 4 4 4 1 6 3 3 2 5
2 6 3 5 5 7 3
Min/mean/max processing cycles : 6313/33512/88039
Min/mean/max overhead cycles : 2681/6406/15061

Statistics for core 5:
Number of jobs : 119
Number of jobs per flow: 6 2 5 3 5 3 1 4 4 1 7 2 2 3 4 3 6 5 2 4 3 4 5 4 5
5 2 5 3 5 3 3
Min/mean/max processing cycles : 6125/35972/82947
Min/mean/max overhead cycles : 2697/6709/18799

Statistics for core 6:
Number of jobs : 137
Number of jobs per flow: 3 5 5 4 5 4 3 5 3 5 2 3 5 3 4 3 4 3 2 4 6 4 6 7 5
4 4 5 6 5 4 6
Min/mean/max processing cycles : 6163/30879/85305
Min/mean/max overhead cycles : 2687/6238/17931

Statistics for core 7:
Number of jobs : 123
Number of jobs per flow: 4 2 2 2 3 5 3 4 3 4 4 7 4 4 6 5 5 4 2 2 3 5 5 4 4
2 5 3 5 3 3 6
Min/mean/max processing cycles : 6262/34900/85341
Min/mean/max overhead cycles : 2679/6918/18907

Statistics for all cores
Total number of jobs: 1024
Total number of jobs per flow: 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
Min/mean/max processing cycles : 6085/33487/90643
Min/mean/max overhead cycles : 2677/6353/18907

Start/stop/run cycles: 61423992/80882278/19458286
Debug(Core 0): <CompletionTag> Example #0 passed.

==========

6.3.5 Example_0p

Example_0p is a derivative of Example_0 that implements the post-store capability of

the OpenEM.

The purpose of the post-store is to offload to the infrastructure PKTDMA the transfer

of local data processed by a receive function to a global memory for a post processing

of these data by another entity.

72

The receive function allocate a local event by calling the ti_em_local() API and then

call the em_send() API on this event to trigger the PKDMA transfer.

This section is to be completed.

6.3.5.1 Initialization procedure

This section is to be completed.

73

7 OpenEM on ARM
This section is to be completed

74

8 OpenEM on ARM and DSP
This section is to be completed

	Open Event Machine library
	1 Acronyms
	2 Conventions
	3 Scope
	4 Introduction
	5 Installing OpenEM
	6 OpenEM on DSP
	6.1 Installing OpenEM in CCS
	6.2 Managing examples in CCS
	6.2.1.1 Import projects
	6.2.1.2 Build Project
	6.2.1.3 Run project

	6.3 Examples
	6.3.1 Abstraction layer
	6.3.1.1.1 ti_em_pool_config2_t
	6.3.1.1.2 ti_em_pl_pool_config2_t
	6.3.1.1.3 ti_em_hw_config2_t
	6.3.1.1.4 ti_em_init_global2()
	6.3.1.1.5 ti_em_init_local2()
	6.3.1.1.6 ti_em_exit_global2()

	6.3.2 File organization
	6.3.3 Memory management
	6.3.3.1 Memory areas
	6.3.3.2 Libraries memory sections
	6.3.3.3 Abstraction layer memory sections
	6.3.3.4 Application memory sections

	6.3.4 Example_0
	6.3.4.1 Initialization procedure
	6.3.4.1.1 OpenEM global initialization
	6.3.4.1.1.1 my_em_initPoolConfig
	6.3.4.1.1.2 my_em_initPlPoolConfig
	6.3.4.1.1.3 my_em_initHwConfig

	6.3.4.1.2 OpenEM local initialization

	6.3.4.2 OpenEM objects creation
	6.3.4.2.1 EOs
	6.3.4.2.2 EQs
	6.3.4.2.3 OpenEM activation

	6.3.4.3 Summary
	6.3.4.3.1 Symbolic constants
	6.3.4.3.2 Variables and arrays
	6.3.4.3.3 Functions

	6.3.4.4 Outputs
	6.3.4.4.1 Parallel queues – preload size (64*1024) – 1 scheduler thread
	6.3.4.4.2 Atomic queues – preload size (64*1024) – 1 scheduler thread
	6.3.4.4.3 Parallel queues – preload off – 1 scheduler thread
	6.3.4.4.4 Parallel queues – preload off – 4 scheduler threads

	6.3.5 Example_0p
	6.3.5.1 Initialization procedure

	7 OpenEM on ARM
	8 OpenEM on ARM and DSP

