GNU Awk

GAWK: Effective AWK Programming

A User’s Guide for GNU Awk
Edition 4.2
February, 2018

Arnold D. Robbins

“To boldly go where no man has gone before” is a Registered Trademark of Paramount
Pictures Corporation.

Published by:

Free Software Foundation

51 Franklin Street, Fifth Floor
Boston, MA 02110-1301 USA

Phone: +1-617-542-5942

Fax: +1-617-542-2652

Email: gnu@gnu.org

URL: https://www.gnu.org/

ISBN 1-882114-28-0

Copyright (©) 1989, 1991, 1992, 1993, 1996-2005, 2007, 2009—-2018
Free Software Foundation, Inc.

This is Edition 4.2 of GAWK: Effective AWK Programming: A User’s Guide for GNU Awk,
for the 4.2.1 (or later) version of the GNU implementation of AWK.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.3 or any later version published by
the Free Software Foundation; with the Invariant Sections being “GNU General Public
License”, with the Front-Cover Texts being “A GNU Manual”, and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

a. The FSF’s Back-Cover Text is: “You have the freedom to copy and modify this GNU
manual.”

mailto:gnu@gnu.org
https://www.gnu.org/

To my parents, for their love, and for the wonderful example they set for me.
To my wife, Miriam, for making me complete. Thank you for building your life together with me.

To our children, Chana, Rivka, Nachum, and Malka, for enrichening our lives in innumerable ways.

Short Contents

Foreword to the Third Edition., 1
Foreword to the Fourth Edition........ 3
Preface. . .. 5

Part I: The awk Language

1 Getting Started with awk 17
2 Runningawkand gawk 31
3 Regular Expressions i 47
4 Reading Input Files......... i 61
5 Printing Output. 93
6 EXPressionsc..iiiiiiiiiiii 113
7 Patterns, Actions, and Variables. 141
8 Arraysin awk. 171
9 Functionscoiiiiiii e 187
Part II: Problem Solving with awk
10 A Library of awk Functions. 233
11 Practical awk Programs............. 267
Part III: Moving Beyond Standard awk with gawk
12 Advanced Features of gawk 315
13 Internationalization with gawk 333
14 Debugging awk Programs 343
15 Arithmetic and Arbitrary-Precision Arithmetic with gawk ... 359
16 Writing Extensions for gawk 373
Part IV: Appendices
A The Evolution of the awk Language 439
B Installing gawk........ ... i 457
C Implementation Notes.......... 475
D Basic Programming Concepts.......... 487
GloSSaTY .« v v e 491
GNU General Public License o it 503
GNU Free Documentation License.......................... 515

Table of Contents

Foreword to the Third Edition.....................
Foreword to the Fourth Edition....................
Preface........ ...
History of awk and gawkoiuiiiiiiiiii it 6
A Rose by Any Other Name ..., 6
Using This Book. 7
Typographical Conventions i, 9
Dark Corners.ouu i 10
The GNU Project and This Book ..., 10
How to Contribute.......o i 11
Acknowledgments. 11

Part I: The awk Language

Getting Started with awk...................... 17
1.1 How to Run awk Programs it 17
1.1.1 One-Shot Throwaway awk Programs 17
1.1.2 Running awk Without Input Files......................... 18
1.1.3 Running Long Programs..................oooiiiiiiian. 18
1.1.4 Executable awk Programs...............o 19
1.1.5 Comments in awk Programs............. 20
1.1.6 Shell Quoting Issueso, 21
1.1.6.1 Quoting in MS-Windows Batch Files................. 23

1.2 Data files for the Examples.................iiiiiiia.. 23
1.3 Some Simple Examples............c.ooiiiiiiiii i 24
1.4 An Example with Two Rules 26
1.5 A More Complex Example. 27
1.6 awk Statements Versus Lines.............o, 28
1.7 Other Featuresof awk i i 29
1.8 When to Use amwk.....oviiiiiiiit e 30
1.9 SUMMATY . ..ot 30
Running awk and gawk.......................... 31
2.1 Invoking awkt 31
2.2 Command-Line Options, 31
2.3 Other Command-Line Arguments.................coooiio ... 38
2.4 Naming Standard Input i i 39
2.5 The Environment Variables gawk Uses......................... 39

2.5.1 The AWKPATH Environment Variable....................... 39

iii

iv GAWK: Effective AWK Programming

2.5.2 The AWKLIBPATH Environment Variable 40
2.5.3 Other Environment Variables............................. 40
2.6 gawk’s Exit Status......... ... 42
2.7 Including Other Files into Your Program....................... 42
2.8 Loading Dynamic Extensions into Your Program............... 44
2.9 Obsolete Options and/or Featurescoovviiinan... 44
2.10 Undocumented Options and Features......................... 44
211 SUIMINATY « o oottt et et et et e e et 44
3 Regular Expressions 47
3.1 How to Use Regular Expressions..................ooiiiii... 47
3.2 ESCape SEqUENCES. ...\ .ttt 48
3.3 Regular Expression Operatorsc.ovviveiiinnnennnnn... 50
3.4 Using Bracket Expressions..............oooiiiiiiiiiiiii., 53
3.5 How Much Text Matches? i, 55
3.6 Using Dynamic Regexps.........ooiiiiiiiiiiiiii.. 55
3.7 gawk-Specific Regexp Operators ..., 56
3.8 Case Sensitivity in Matching................ o. 58
3.9 SUMMATY . o ettt e e 59
4 Reading Input Files............................ 61
4.1 How Input Is Split into Records 61
4.1.1 Record Splitting with Standard awk....................... 61
4.1.2 Record Splitting with gawkol 63
4.2 Examining Fields............ i 65
4.3 Nonconstant Field Numbers o .. 66
4.4 Changing the Contents of a Field............. 67
4.5 Specifying How Fields Are Separated 69
4.5.1 Whitespace Normally Separates Fields.................... 70
4.5.2 Using Regular Expressions to Separate Fields 70
4.5.3 Making Each Character a Separate Field.................. 71
4.5.4 Setting FS from the Command Line....................... 71
4.5.5 Making the Full Line Be a Single Field.................... 73
4.5.6 Field-Splitting Summary......... ... i 73
4.6 Reading Fixed-Width Data........... 74
4.6.1 Processing Fixed-Width Data............... 74
4.6.2 Skipping Intervening Fields............ 76
4.6.3 Capturing Optional Trailing Data......................... 76
4.6.4 Field Values With Fixed-Width Data 76
4.7 Defining Fields by Content oo, 7
4.8 Checking How gawk Is Splitting Records....................... 78
4.9 Multiple-Line Recordso 79
4.10 Explicit Input with getline............. L. 81
4.10.1 Using getline with No Arguments...................... 82
4.10.2 Using getline into a Variable.................. 83
4.10.3 Using getline froma File............ 83

4.10.4 Using getline into a Variable from a File 84

4.10.5 Using getline froma Pipe............ 84

4.10.6 Using getline into a Variable from a Pipe............... 86
4.10.7 Using getline from a Coprocess......................... 86
4.10.8 Using getline into a Variable from a Coprocess......... 86
4.10.9 Points to Remember About getline..................... 86
4.10.10 Summary of getline Variants.......................... 87
4.11 Reading Input with a Timeout 88
4.12 Retrying Reads After Certain Input Errors 89
4.13 Directories on the Command Line 90
414 SUIMIATY .« .ottt et et 90
415 EXOICISES . . v vttt ettt e 91
Printing Output.......... 93
5.1 The print Statement........ ..., 93
5.2 print Statement Examples......... ...t 93
5.3 Output Separators.uieiiit e 95
5.4 Controlling Numeric Output with print....................... 96
5.5 Using printf Statements for Fancier Printing.................. 96
5.5.1 Introduction to the printf Statement..................... 96
5.5.2 Format-Control Letters........... oL, 97
5.5.3 Modifiers for printf Formats..................... 98
5.5.4 Examples Using printf ..., 100
5.6 Redirecting Output of print and printf..................... 101
5.7 Special Files for Standard Preopened Data Streams........... 104
5.8 Special File names in gawk 105
5.8.1 Accessing Other Open Files with gawk................... 105
5.8.2 Special Files for Network Communications............... 105
5.8.3 Special File name Caveats..............cccoviiieeao.... 106
5.9 Closing Input and Output Redirections....................... 106
5.10 Enabling Nonfatal Output............. 109
5.11 SUIMINATY vttt et ettt et 110
D.12 EXEICISES . .. e 110
Expressions....................... 113
6.1 Constants, Variables, and Conversions........................ 113
6.1.1 Constant EXpressions.o .. 113
6.1.1.1 Numeric and String Constants 113
6.1.1.2 Octal and Hexadecimal Numbers.................... 113
6.1.1.3 Regular Expression Constants....................... 114

6.1.2 Using Regular Expression Constants..................... 115
6.1.2.1 Standard Regular Expression Constants............. 115
6.1.2.2 Strongly Typed Regexp Constants 116

6.1.3 Variables. ... 117
6.1.3.1 Using Variables in a Program 117
6.1.3.2 Assigning Variables on the Command Line.......... 118

6.1.4 Conversion of Strings and Numbers...................... 118

6.1.4.1 How awk Converts Between Strings and Numbers ... 118

vi GAWK: Effective AWK Programming

6.1.4.2 Locales Can Influence Conversion................... 119

6.2 Operators: Doing Something with Values..................... 121
6.2.1 Arithmetic Operators............oiiiiiiiiiiiiennn... 121
6.2.2 String Concatenation.................coiiiiiiiiii.. 122
6.2.3 Assignment Expressions i 123
6.2.4 Increment and Decrement Operators..................... 126
6.3 Truth Values and Conditions 127
6.3.1 Trueand False in awkcoooiiiiiiiiiiiiiiinnnn... 127
6.3.2 Variable Typing and Comparison Expressions............ 127
6.3.2.1 String Type versus Numeric Type................... 128
6.3.2.2 Comparison Operators............coovvuieeninee . 130
6.3.2.3 String Comparison Based on Locale Collating Order. . 132

6.3.3 Boolean Expressions...........ccoiiiiiiiiiiiiiiii ., 132
6.3.4 Conditional Expressionscoiiiiiiiiiii.. 134
6.4 Function Calls........ ... 135
6.5 Operator Precedence (How Operators Nest)................... 136
6.6 Where You Are Makes a Difference........................... 137
6.7 SUMMATY . ..ottt e e e 138
7 Patterns, Actions, and Variables 141
7.1 Pattern Elements...........oo i 141
7.1.1 Regular Expressions as Patterns......................... 141
7.1.2 Expressions as Patterns.................. 141
7.1.3 Specifying Record Ranges with Patterns 143
7.1.4 The BEGIN and END Special Patterns..................... 144
7.1.4.1 Startup and Cleanup Actions 144
7.1.4.2 Input/Output from BEGIN and END Rules............ 145

7.1.5 The BEGINFILE and ENDFILE Special Patterns............ 145
7.1.6 The Empty Patterno i 146
7.2 Using Shell Variables in Programs 146
T3 ACHIONS ..ot 147
7.4 Control Statements in Actions.......... ..., 148
7.4.1 The if-else Statement......................cooviio.... 148
7.4.2 The while Statement................., 149
7.4.3 The do-while Statement......................cciiiininn. 150
7.4.4 The for Statement i, 150
7.4.5 The switch Statement 151
7.4.6 The break Statement....................ciiiiiiiiii... 152
7.4.7 The continue Statement 153
7.4.8 The next Statement...............ccoiiiiiiiiiiiiiiinn. 154
7.4.9 The nextfile Statement................ 155
7.4.10 The exit Statement......... ..., 156
7.5 Predefined Variables.................. 157
7.5.1 Built-in Variables That Control awk...................... 157
7.5.2 Built-in Variables That Convey Information.............. 159
7.5.3 Using ARGC and ARGVttt 166

T6 SUMIMATY .« .ottt et 168

vii

8 Arraysin awk...............coiiiiiiiiiiiiii.. 171
8.1 The Basics of ATraysot 171
8.1.1 Introduction to Arrays..........c.ooviieiiiiiiiiiiiean.. 171
8.1.2 Referring to an Array Element........................... 173
8.1.3 Assigning Array Elements 174
8.1.4 Basic Array Example...... i 174
8.1.5 Scanning All Elements of an Array....................... 175
8.1.6 Using Predefined Array Scanning Orders with gawk 176
8.2 Using Numbers to Subscript Arrays........................... 179
8.3 Using Uninitialized Variables as Subscripts.................... 179
8.4 The delete Statementc.ooiiiiiiiiieiiiaan.. 180
8.5 Multidimensional ATrayscooeiiiiiiiiiiii 181
8.5.1 Scanning Multidimensional Arrays....................... 183
8.6 Arrays of Arrays 183
8.7 SUMMATY ...ttt e 185
9 Functions............. 187
9.1 Built-in Functions.......o i i 187
9.1.1 Calling Built-in Functions, 187
9.1.2 Numeric Functions ..., 188
9.1.3 String-Manipulation Functions........................... 189
9.1.3.1 More about ‘\’ and ‘& with
sub(), gsub(), and gensub()o 198
9.1.4 Input/Output Functions..................ooooiiiii... 201
9.1.5 Time Functions..........ccooiiiiiiiiiiiiiiiiiiinninn. 204
9.1.6 Bit-Manipulation Functions.............................. 209
9.1.7 Getting Type Information 212
9.1.8 String-Translation Functions............................. 213
9.2 User-Defined Functions............. .o, 213
9.2.1 Function Definition Syntax i 213
9.2.2 Function Definition Examples............................ 215
9.2.3 Calling User-Defined Functions 217
9.2.3.1 Writing a Function Call............ 217
9.2.3.2 Controlling Variable Scope.......................... 217
9.2.3.3 Passing Function Arguments by Value Or by Reference. . 219
9.2.4 The return Statement 221
9.2.5 Functions and Their Effects on Variable Typing.......... 222
9.3 Indirect Function Calls......... i ... 223

9.4 SUIMIMATY ...ttt e e e e 228

viii GAWK: Effective AWK Programming

Part II: Problem Solving with awk

10 A Library of awk Functions 233
10.1 Naming Library Function Global Variables 234
10.2 General Programming.......... ..., 235

10.2.1 Converting Strings to Numbers......................... 235
10.2.2 ASSEItIONS . . v vttt et e 236
10.2.3 Rounding Numbers.......... ..., 238
10.2.4 The CIliff Random Number Generator................... 239
10.2.5 Translating Between Characters and Numbers 239
10.2.6 Merging an Array into a String......................... 241
10.2.7 Managing the Time of Day 241
10.2.8 Reading a Whole File at Once.......................... 243
10.2.9 Quoting Strings to Pass to the Shell 244
10.3 Data file Management.......... ..., 245
10.3.1 Noting Data file Boundaries 245
10.3.2 Rereading the Current File 246
10.3.3 Checking for Readable Data files........................ 248
10.3.4 Checking for Zero-Length Files 248
10.3.5 Treating Assignments as File names 249
10.4 Processing Command-Line Options.......................... 250
10.5 Reading the User Database............., 255
10.6 Reading the Group Database............ 259
10.7 Traversing Arrays of Arrays ..., 263
10.8 SUMIMATY .« oottt e 265
10.9 EXEICISES. . ..ottt ittt e 265

11 Practical awk Programs...................... 267
11.1 Running the Example Programs............................. 267
11.2 Reinventing Wheels for Fun and Profit 267

11.2.1 Cutting Out Fields and Columns 267
11.2.2 Searching for Regular Expressions in Files 272
11.2.3 Printing Out User Information....................... ... 276
11.2.4 Splitting a Large File into Pieces 278
11.2.5 Duplicating Output into Multiple Files 279
11.2.6 Printing Nonduplicated Lines of Text................... 281
11.2.7 Counting Things ... 285
11.3 A Grab Bag of awk Programs............... 287
11.3.1 Finding Duplicated Words in a Document 287
11.3.2 An Alarm Clock Program 288
11.3.3 Transliterating Characters............... ... 290
11.3.4 Printing Mailing Labels oL, 292
11.3.5 Generating Word-Usage Counts......................... 294
11.3.6 Removing Duplicates from Unsorted Text............... 296
11.3.7 Extracting Programs from Texinfo Source Files......... 297
11.3.8 A Simple Stream Editor................., 300

11.3.9 An Easy Way to Use Library Functions................. 301

11.3.10 Finding Anagrams from a Dictionary 308

11.3.11 And Now for Something Completely Different.......... 309
1104 SUMIMATY . o oottt e e e e e 310
11,5 EXEICISES . . vttt ittt e 310

Part ITI: Moving Beyond Standard awk with gawk

12 Advanced Features of gawk.................. 315
12.1 Allowing Nondecimal Input Data............................ 315
12.2 Controlling Array Traversal and Array Sorting............... 316

12.2.1 Controlling Array Traversal.............. 316
12.2.2 Sorting Array Values and Indices with gawk............. 320
12.3 Two-Way Communications with Another Process............ 322
12.4 Using gawk for Network Programming 325
12.5 Profiling Your awk Programs, 326
12,6 SUMIMATY .. oottt et e e e 330

13 Internationalization with gawk.............. 333
13.1 Internationalization and Localization 333
13.2 GNU gettext. . oot 333
13.3 Internationalizing awk Programs............................. 335
13.4 Translating awk Programs............ ..., 337

13.4.1 Extracting Marked Strings..............o L 337
13.4.2 Rearranging printf Arguments 338
13.4.3 awk Portability Issues............ooooiiiiiiiiiii 339
13.5 A Simple Internationalization Example 340
13.6 gawk Can Speak Your Language............................. 341
13,7 SUMIMATY ..o oot e 341

14 Debugging awk Programs.................... 343

14.1 Introduction to the gawk Debugger.......................... 343
14.1.1 Debugging in Generalo i, 343
14.1.2 Debugging Concepts.ccoviiiiiiiiiiiiieannn.. 343
14.1.3 awk Debugging o i 344

14.2 Sample gawk Debugging Session, 344
14.2.1 How to Start the Debugger.............. 345
14.2.2 Finding the Bug...... o i 345

14.3 Main Debugger Commands..............c.oooiiiiiiia... 348
14.3.1 Control of Breakpoints 348
14.3.2 Control of Executiono ., 350
14.3.3 Viewing and Changing Data............................ 351
14.3.4 Working with the Stack, 352
14.3.5 Obtaining Information About the

Program and the Debugger State............... 353
14.3.6 Miscellaneous Commands.c.oovueeevineeann... 355

14.4 Readline SUPPOTItovun it 356

x GAWK: Effective AWK Programming

14.5 Limitations i e 357
14.6 SUMIMATY ..ottt et e e e e 357

15 Arithmetic and Arbitrary-Precision

Arithmetic with gawk 359
15.1 A General Description of Computer Arithmetic.............. 359
15.2 Other Stuff to Know i 360
15.3 Arbitrary-Precision Arithmetic Features in gawk............. 362
15.4 Floating-Point Arithmetic: Caveat Emptor!.................. 362
15.4.1 Floating-Point Arithmetic Is Not Exact................. 363
15.4.1.1 Many Numbers Cannot Be Represented Exactly. ... 363
15.4.1.2 Be Careful Comparing Values...................... 363
15.4.1.3 Errors Accumulate L. 364
15.4.2 Getting the Accuracy You Need 365
15.4.3 Try a Few Extra Bits of Precision and Rounding........ 365
15.4.4 Setting the Precision i i 366
15.4.5 Setting the Rounding Mode 367
15.5 Arbitrary-Precision Integer Arithmetic with gawk............ 369
15.6 How To Check If MPFR Is Available 370
15.7 Standards Versus Existing Practice.......................... 370
15.8 SUMMATY .« oot e 372
16 Writing Extensions for gawk................. 373
16.1 Introductionc.ouoiiiiiiiii i 373
16.2 Extension Licensing............cooiiiiiiiiiiiiiiiiiii . 373
16.3 How It Works at a High Level 373
16.4 API Description..........ouieiiii i 375
16.4.1 Introduction.............cc.oeiiiiiiiiiiiiiiiiiiaann. 375
16.4.2 General-Purpose Data Types...............ooiina... 377
16.4.3 Memory Allocation Functions and Convenience Macros. . 381
16.4.4 Constructor Functions.............. ... i, 382
16.4.5 Registration Functions............... 384
16.4.5.1 Registering An Extension Function 384
16.4.5.2 Registering An Exit Callback Function............. 386
16.4.5.3 Registering An Extension Version String........... 386
16.4.5.4 Customized Input Parsers 386
16.4.5.5 Customized Output Wrappers 391
16.4.5.6 Customized Two-way Processors................... 393
16.4.6 Printing Messagesoouuiiiiiiiiiiiiii i 393
16.4.7 Updating ERRNOoiititiii i 394
16.4.8 Requesting Values........ ..., 394
16.4.9 Accessing and Updating Parameters.................... 395
16.4.10 Symbol Table Access........cvviiiiiiiiii .. 395
16.4.10.1 Variable Access and Update by Name............. 395
16.4.10.2 Variable Access and Update by Cookie............ 396
16.4.10.3 Creating and Using Cached Values................ 398

16.4.11 Array Manipulation...........o il 400

16.4.11.1 Array Data Types......cccovviiiiiiiinnnnn... 400

16.4.11.2 Array Functions............ot 401
16.4.11.3 Working With All The Elements of an Array...... 402
16.4.11.4 How To Create and Populate Arrays.............. 406
16.4.12 Accessing and Manipulating Redirections.............. 408
16.4.13 API Variables......... ... 409
16.4.13.1 API Version Constants and Variables............. 409
16.4.13.2 GMP and MPFR Version Information 410
16.4.13.3 Informational Variables........................... 410
16.4.14 Boilerplate Code ..., 411
16.4.15 Changes From Version 1 of the API 413
16.5 How gawk Finds Extensions ool 413
16.6 Example: Some File Functions 413
16.6.1 Using chdir() and stat()ccovviiiiiiiann. 414
16.6.2 C Code for chdir() and stat()ccoia. .. 416
16.6.3 Integrating the Extensions................ 422
16.7 The Sample Extensions in the gawk Distribution............. 423
16.7.1 File-Related Functions........... oo, 424
16.7.2 Interface to fnmatch() ..., 426
16.7.3 Interface to fork(), wait(), and waitpid() 427
16.7.4 Enabling In-Place File Editing................... 428
16.7.5 Character and Numeric values: ord() and chr() 429
16.7.6 Reading Directoriesc.ooiiiiiiiiiiiiiiin.. 429
16.7.7 Reversing Output i 430
16.7.8 Two-Way I/O Example..............ooooiiiiiiiiii.. 430
16.7.9 Dumping and Restoring an Array....................... 431
16.7.10 Reading an Entire File......... 431
16.7.11 Extension Time Functions.......................... ... 432
16.7.12 API TSt . oottt 432
16.8 The gawkextlib Project il 432
16.9 SUMMATY ..ottt 433
16.10 EXETCISES. .. vttt ettt e 434

Part IV: Appendices

Appendix A The Evolution of the awk Language .. 439

A.1 Major Changes Between V7 and SVR3.1..................... 439
A.2 Changes Between SVR3.1and SVR4......................... 440
A.3 Changes Between SVR4 and POSIX awk 440
A.4 Extensions in Brian Kernighan’s awk......................... 441
A.5 Extensions in gawk Not in POSIX awk 441
A.6 History of gawk Features............ot 444
A.7 Common Extensions Summary................ccooviiiini ... 450
A.8 Regexp Ranges and Locales: A Long Sad Story 451
A.9 Major Contributors to gawk...................oiiiiii.L. 452

ATO SUMMATY . .o ettt e 454

xii GAWK: Effective AWK Programming

Appendix B Installing gawk..................... 457
B.1 The gawk Distribution 457
B.1.1 Getting the gawk Distribution.............. 457
B.1.2 Extracting the Distribution 457
B.1.3 Contents of the gawk Distribution....................... 458
B.2 Compiling and Installing gawk on Unix-Like Systems......... 461
B.2.1 Compiling gawk for Unix-Like Systems 461
B.2.2 Shell Startup Files ... 462
B.2.3 Additional Configuration Options 462
B.2.4 The Configuration Process 463
B.3 Installation on Other Operating Systems..................... 463
B.3.1 Installation on MS-Windows 464
B.3.1.1 Installing a Prepared

Distribution for MS-Windows Systems..................... 464
B.3.1.2 Compiling gawk for PC Operating Systems 464
B.3.1.3 Using gawk on PC Operating Systems 464
B.3.1.4 Using gawk In The Cygwin Environment............ 465
B.3.1.5 Using gawk In The MSYS Environment............. 466

B.3.2 Compiling and Installing gawk on Vax/VMS and OpenVMS. . 466
B.3.2.1 Compiling gawk on VMS 466
B.3.2.2 Compiling gawk Dynamic Extensions on VMS 466
B.3.2.3 Installing gawkon VMS..........., 467
B.3.2.4 Running gawkon VMS.........., 468
B.3.2.5 The VMS GNV Project ..., 469
B.3.2.6 Some VMS Systems Have An Old Version of gawk .. 470
B.4 Reporting Problems and Bugs........................ L 470
B.4.1 Submitting Bug Reports i 470
B.4.2 Please Don’t Post Bug Reports to USENET 471
B.4.3 Reporting Problems with Non-Unix Ports 471
B.5 Other Freely Available awk Implementations.................. 471
B.6 Summary 474
Appendix C Implementation Notes............ 475
C.1 Downward Compatibility and Debugging..................... 475
C.2 Making Additions to gawk ..., 475
C.2.1 Accessing The gawk Git Repository 475
C.2.2 Adding New Features, 476
C.2.3 Porting gawk to a New Operating System 477
C.2.4 Why Generated Files Are Kept In Git................... 479
C.3 Probable Future Extensions....................oooiiit. 481
C.4 Some Limitations of the Implementation 481
C.5 Extension API Design ... 481
C.5.1 Problems With The Old Mechanism..................... 482
C.5.2 Goals For A New Mechanism............................ 482
C.5.3 Other Design Decisions.............ccooiiiiiiiiii .. 483
C.5.4 Room For Future Growth 484
C.6 Compatibility For Old Extensions............................ 484

C.T SUMMATY . ..ottt e e e e e 485

Appendix D Basic Programming Concepts ... 487

D.1 What a Program Does.......... ..., 487
D.2 Data Values in a Computer.................cooiiiiiiiii... 488
Glossary 491
GNU General Public License.................... 503
GNU Free Documentation License.............. 515
ADDENDUM: How to use this License for your documents. 521

xiii

Foreword to the Third Edition 1

Foreword to the Third Edition

Arnold Robbins and I are good friends. We were introduced in 1990 by circumstances—and
our favorite programming language, AWK. The circumstances started a couple of years
earlier. I was working at a new job and noticed an unplugged Unix computer sitting in the
corner. No one knew how to use it, and neither did I. However, a couple of days later, it
was running, and I was root and the one-and-only user. That day, I began the transition
from statistician to Unix programmer.

On one of many trips to the library or bookstore in search of books on Unix, I found
the gray AWK book, a.k.a. Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger’s
The AWK Programming Language (Addison-Wesley, 1988). awk’s simple programming
paradigm—find a pattern in the input and then perform an action—often reduced complex
or tedious data manipulations to a few lines of code. I was excited to try my hand at
programming in AWK.

Alas, the awk on my computer was a limited version of the language described in the
gray book. I discovered that my computer had “old awk” and the book described “new
awk.” I learned that this was typical; the old version refused to step aside or relinquish its
name. If a system had a new awk, it was invariably called nawk, and few systems had it.
The best way to get a new awk was to f£tp the source code for gawk from prep.ai.mit.edu.
gawk was a version of new awk written by David Trueman and Arnold, and available under
the GNU General Public License.

(Incidentally, it’s no longer difficult to find a new awk. gawk ships with GNU/Linux, and
you can download binaries or source code for almost any system; my wife uses gawk on her
VMS box.)

My Unix system started out unplugged from the wall; it certainly was not plugged into
a network. So, oblivious to the existence of gawk and the Unix community in general, and
desiring a new awk, I wrote my own, called mawk. Before I was finished, I knew about gawk,
but it was too late to stop, so I eventually posted to a comp.sources newsgroup.

A few days after my posting, I got a friendly email from Arnold introducing himself. He
suggested we share design and algorithms and attached a draft of the POSIX standard so
that I could update mawk to support language extensions added after publication of The
AWK Programming Language.

Frankly, if our roles had been reversed, I would not have been so open and we probably
would have never met. I'm glad we did meet. He is an AWK expert’s AWK expert and a
genuinely nice person. Arnold contributes significant amounts of his expertise and time to
the Free Software Foundation.

This book is the gawk reference manual, but at its core it is a book about AWK program-
ming that will appeal to a wide audience. It is a definitive reference to the AWK language
as defined by the 1987 Bell Laboratories release and codified in the 1992 POSIX Utilities
standard.

On the other hand, the novice AWK programmer can study a wealth of practical pro-
grams that emphasize the power of AWK’s basic idioms: data-driven control flow, pattern
matching with regular expressions, and associative arrays. Those looking for something
new can try out gawk’s interface to network protocols via special /inet files.

2 GAWK: Effective AWK Programming

The programs in this book make clear that an AWK program is typically much smaller
and faster to develop than a counterpart written in C. Consequently, there is often a payoff
to prototyping an algorithm or design in AWK to get it running quickly and expose problems
early. Often, the interpreted performance is adequate and the AWK prototype becomes the
product.

The new pgawk (profiling gawk), produces program execution counts. I recently exper-
imented with an algorithm that for n lines of input, exhibited ~ Cn? performance, while
theory predicted ~ Cnlogn behavior. A few minutes poring over the awkprof.out pro-
file pinpointed the problem to a single line of code. pgawk is a welcome addition to my
programmer’s toolbox.

Arnold has distilled over a decade of experience writing and using AWK programs, and
developing gawk, into this book. If you use AWK or want to learn how, then read this book.

Michael Brennan

Author of mawk
March 2001

Foreword to the Fourth Edition 3

Foreword to the Fourth Edition

Some things don’t change. Thirteen years ago I wrote: “If you use AWK or want to learn
how, then read this book.” True then, and still true today.

Learning to use a programming language is about more than mastering the syntax.
One needs to acquire an understanding of how to use the features of the language to solve
practical programming problems. A focus of this book is many examples that show how to
use AWK.

Some things do change. Our computers are much faster and have more memory. Con-
sequently, speed and storage inefficiencies of a high-level language matter less. Prototyping
in AWK and then rewriting in C for performance reasons happens less, because more often
the prototype is fast enough.

Of course, there are computing operations that are best done in C or C++. With gawk
4.1 and later, you do not have to choose between writing your program in AWK or in
C/C++. You can write most of your program in AWK and the aspects that require C/C++
capabilities can be written in C/C++, and then the pieces glued together when the gawk
module loads the C/C++ module as a dynamic plug-in. Chapter 16 [Writing Extensions for
gawk|, page 373, has all the details, and, as expected, many examples to help you learn the
ins and outs.

I enjoy programming in AWK and had fun (re)reading this book. I think you will too.

Michael Brennan
Author of mawk
October 2014

Preface 5

Preface

Several kinds of tasks occur repeatedly when working with text files. You might want to
extract certain lines and discard the rest. Or you may need to make changes wherever
certain patterns appear, but leave the rest of the file alone. Such jobs are often easy with
awk. The awk utility interprets a special-purpose programming language that makes it easy
to handle simple data-reformatting jobs.

The GNU implementation of awk is called gawk; if you invoke it with the proper options
or environment variables, it is fully compatible with the POSIX! specification of the awk
language and with the Unix version of awk maintained by Brian Kernighan. This means
that all properly written awk programs should work with gawk. So most of the time, we
don’t distinguish between gawk and other awk implementations.

Using awk you can:
e Manage small, personal databases
e Generate reports
e Validate data
e Produce indexes and perform other document-preparation tasks

e Experiment with algorithms that you can adapt later to other computer languages

In addition, gawk provides facilities that make it easy to:

e Extract bits and pieces of data for processing
e Sort data

e Perform simple network communications

e Profile and debug awk programs

e Extend the language with functions written in C or C++

This book teaches you about the awk language and how you can use it effectively. You
should already be familiar with basic system commands, such as cat and 1s,? as well as
basic shell facilities, such as input/output (I/O) redirection and pipes.

Implementations of the awk language are available for many different computing en-
vironments. This book, while describing the awk language in general, also describes the
particular implementation of awk called gawk (which stands for “GNU awk”). gawk runs
on a broad range of Unix systems, ranging from Intel-architecture PC-based computers up
through large-scale systems. gawk has also been ported to Mac OS X, Microsoft Windows
(all versions), and OpenVMS.?

1 The 2008 POSIX standard is accessible online at http: //wuw .opengroup.org/onlinepubs/9699919799/.

2 These utilities are available on POSIX-compliant systems, as well as on traditional Unix-based systems.
If you are using some other operating system, you still need to be familiar with the ideas of I/O redirection
and pipes.

3 Some other, obsolete systems to which gawk was once ported are no longer supported and the code for
those systems has been removed.

http://www.opengroup.org/onlinepubs/9699919799/

6 GAWK: Effective AWK Programming

History of awk and gawk

-
Recipe for a Programming Language

1 part egrep 1 part snobol
2 parts ed 3 parts C

Blend all parts well using lex and yacc. Document minimally and release.

and release.
N

After eight years, add another part egrep and two more parts C. Document very well

/)

The name awk comes from the initials of its designers: Alfred V. Aho, Peter J. Wein-
berger, and Brian W. Kernighan. The original version of awk was written in 1977 at AT&T
Bell Laboratories. In 1985, a new version made the programming language more powerful,
introducing user-defined functions, multiple input streams, and computed regular expres-
sions. This new version became widely available with Unix System V Release 3.1 (1987).
The version in System V Release 4 (1989) added some new features and cleaned up the
behavior in some of the “dark corners” of the language. The specification for awk in the
POSIX Command Language and Utilities standard further clarified the language. Both the
gawk designers and the original awk designers at Bell Laboratories provided feedback for
the POSIX specification.

Paul Rubin wrote gawk in 1986. Jay Fenlason completed it, with advice from Richard
Stallman. John Woods contributed parts of the code as well. In 1988 and 1989, David
Trueman, with help from me, thoroughly reworked gawk for compatibility with the newer
awk. Circa 1994, I became the primary maintainer. Current development focuses on bug
fixes, performance improvements, standards compliance, and, occasionally, new features.

In May 1997, Jirgen Kahrs felt the need for network access from awk, and with a little
help from me, set about adding features to do this for gawk. At that time, he also wrote the
bulk of TCP/IP Internetworking with gawk (a separate document, available as part of the
gawk distribution). His code finally became part of the main gawk distribution with gawk
version 3.1.

John Haque rewrote the gawk internals, in the process providing an awk-level debugger.
This version became available as gawk version 4.0 in 2011.

See Section A.9 [Major Contributors to gawk], page 452, for a full list of those who have
made important contributions to gawk.

A Rose by Any Other Name

The awk language has evolved over the years. Full details are provided in Appendix A [The
Evolution of the awk Language|, page 439. The language described in this book is often
referred to as “new awk.” By analogy, the original version of awk is referred to as “old awk.”

On most current systems, when you run the awk utility you get some version of new
awk.* If your system’s standard awk is the old one, you will see something like this if you
try the test program:

4 Only Solaris systems still use an old awk for the default awk utility. A more modern awk lives in
/usr/xpg6/bin on these systems.

Preface 7

$ awk 1 /dev/null
awk: syntax error near line 1
awk: bailing out near line 1

In this case, you should find a version of new awk, or just install gawk!

Throughout this book, whenever we refer to a language feature that should be available
in any complete implementation of POSIX awk, we simply use the term awk. When referring
to a feature that is specific to the GNU implementation, we use the term gawk.

Using This Book

The term awk refers to a particular program as well as to the language you use to tell this
program what to do. When we need to be careful, we call the language “the awk language,”
and the program “the awk utility.” This book explains both how to write programs in the
awk language and how to run the awk utility. The term “awk program” refers to a program
written by you in the awk programming language.

Primarily, this book explains the features of awk as defined in the POSIX standard. It
does so in the context of the gawk implementation. While doing so, it also attempts to
describe important differences between gawk and other awk implementations.® Finally, it
notes any gawk features that are not in the POSIX standard for awk.

This book has the difficult task of being both a tutorial and a reference. If you are a
novice, feel free to skip over details that seem too complex. You should also ignore the
many cross-references; they are for the expert user and for the Info and HTML versions of
the book.

There are sidebars scattered throughout the book. They add a more complete explana-
tion of points that are relevant, but not likely to be of interest on first reading. All appear
in the index, under the heading “sidebar.”

Most of the time, the examples use complete awk programs. Some of the more advanced
sections show only the part of the awk program that illustrates the concept being described.

Although this book is aimed principally at people who have not been exposed to awk,
there is a lot of information here that even the awk expert should find useful. In particular,
the description of POSIX awk and the example programs in Chapter 10 [A Library of awk
Functions], page 233, and in Chapter 11 [Practical awk Programs], page 267, should be of
interest.

This book is split into several parts, as follows:

e Part I describes the awk language and the gawk program in detail. It starts with
the basics, and continues through all of the features of awk. It contains the following
chapters:

— Chapter 1 [Getting Started with awk|, page 17, provides the essentials you need to
know to begin using awk.

— Chapter 2 [Running awk and gawk]|, page 31, describes how to run gawk, the
meaning of its command-line options, and how it finds awk program source files.

— Chapter 3 [Regular Expressions|, page 47, introduces regular expressions in general,
and in particular the flavors supported by POSIX awk and gawk.

5 All such differences appear in the index under the entry “differences in awk and gawk.”

https://www.gnu.org/software/gawk/manual/

8 GAWK: Effective AWK Programming

Chapter 4 [Reading Input Files|, page 61, describes how awk reads your data. It
introduces the concepts of records and fields, as well as the getline command.
I/0 redirection is first described here. Network I/0O is also briefly introduced here.

Chapter 5 [Printing Output], page 93, describes how awk programs can produce
output with print and printf.

Chapter 6 [Expressions|, page 113, describes expressions, which are the basic build-
ing blocks for getting most things done in a program.

Chapter 7 [Patterns, Actions, and Variables|, page 141, describes how to write pat-
terns for matching records, actions for doing something when a record is matched,
and the predefined variables awk and gawk use.

Chapter 8 [Arrays in awk|, page 171, covers awk’s one-and-only data structure: the
associative array. Deleting array elements and whole arrays is described, as well
as sorting arrays in gawk. The chapter also describes how gawk provides arrays of
arrays.

Chapter 9 [Functions|, page 187, describes the built-in functions awk and gawk
provide, as well as how to define your own functions. It also discusses how gawk
lets you call functions indirectly.

e Part II shows how to use awk and gawk for problem solving. There is lots of code here
for you to read and learn from. This part contains the following chapters:

Chapter 10 [A Library of awk Functions|, page 233, provides a number of functions
meant to be used from main awk programs.

Chapter 11 [Practical awk Programs|, page 267, provides many sample awk pro-
grams.

Reading these two chapters allows you to see awk solving real problems.

e Part III focuses on features specific to gawk. It contains the following chapters:

Chapter 12 [Advanced Features of gawk|, page 315, describes a number of advanced
features. Of particular note are the abilities to control the order of array traversal,
have two-way communications with another process, perform TCP /IP networking,
and profile your awk programs.

Chapter 13 [Internationalization with gawk|, page 333, describes special features
for translating program messages into different languages at runtime.

Chapter 14 [Debugging awk Programs|, page 343, describes the gawk debugger.
Chapter 15 [Arithmetic and Arbitrary-Precision Arithmetic with gawk], page 359,
describes advanced arithmetic facilities.

Chapter 16 [Writing Extensions for gawk|, page 373, describes how to add new

?

variables and functions to gawk by writing extensions in C or C++.

e Part IV provides the appendices, the Glossary, and two licenses that cover the gawk
source code and this book, respectively. It contains the following appendices:

Appendix A [The Evolution of the awk Language|, page 439, describes how the
awk language has evolved since its first release to the present. It also describes
how gawk has acquired features over time.

Appendix B [Installing gawk|, page 457, describes how to get gawk, how to compile
it on POSIX-compatible systems, and how to compile and use it on different non-

Preface 9

POSIX systems. It also describes how to report bugs in gawk and where to get
other freely available awk implementations.

— Appendix C [Implementation Notes|, page 475, describes how to disable gawk’s
extensions, as well as how to contribute new code to gawk, and some possible
future directions for gawk development.

— Appendix D [Basic Programming Concepts], page 487, provides some very cur-
sory background material for those who are completely unfamiliar with computer
programming.

The [Glossary], page 491, defines most, if not all, of the significant terms used
throughout the book. If you find terms that you aren’t familiar with, try looking
them up here.

— [GNU General Public License|, page 503, and [GNU Free Documentation License],
page 515, present the licenses that cover the gawk source code and this book,
respectively.

Typographical Conventions

This book is written in Texinfo, the GNU documentation formatting language. A single
Texinfo source file is used to produce both the printed and online versions of the documen-
tation. Because of this, the typographical conventions are slightly different than in other
books you may have read.

Examples you would type at the command line are preceded by the common shell primary
and secondary prompts, ‘$” and ‘>’. Input that you type is shown like this. Output from
the command is preceded by the glyph “-”. This typically represents the command’s
standard output. Error messages and other output on the command’s standard error are
preceded by the glyph ”. For example:

$ echo hi on stdout
- hi on stdout
$ echo hello on stderr 1>&2

hello on stderr

In the text, almost anything related to programming, such as command names, variable
and function names, and string, numeric and regexp constants appear in this font. Code
fragments appear in the same font and quoted, ‘1ike this’. Things that are replaced by the
user or programmer appear in this font. Options look like this: —-f. File names are indicated
like this: /path/to/ourfile. Some things are emphasized like this, and if a point needs
to be made strongly, it is done like this. The first occurrence of a new term is usually its
definition and appears in the same font as the previous occurrence of “definition” in this
sentence.

Characters that you type at the keyboard look 1ike this. In particular, there are special
characters called “control characters.” These are characters that you type by holding down
both the CONTROL key and another key, at the same time. For example, a Ctrl-d is typed
by first pressing and holding the CONTROL key, next pressing the d key, and finally releasing
both keys.

For the sake of brevity, throughout this book, we refer to Brian Kernighan’s version
of awk as “BWK awk.” (See Section B.5 [Other Freely Available awk Implementations],
page 471, for information on his and other versions.)

https://www.gnu.org/software/texinfo/

10 GAWK: Effective AWK Programming

Dark Corners

Dark corners are basically fractal—no matter how much you illuminate, there’s
always a smaller but darker one.
—Brian Kernighan

Until the POSIX standard (and GAWK: Effective AWK Programming), many features of
awk were either poorly documented or not documented at all. Descriptions of such features
(often called “dark corners”) are noted in this book with the picture of a flashlight in the
margin, as shown here. They also appear in the index under the heading “dark corner.”

But, as noted by the opening quote, any coverage of dark corners is by definition incom-
plete.

Extensions to the standard awk language that are supported by more than one awk
implementation are marked “(c.e.),” and listed in the index under “common extensions”
and “extensions, common.”

The GNU Project and This Book

The Free Software Foundation (FSF) is a nonprofit organization dedicated to the production
and distribution of freely distributable software. It was founded by Richard M. Stallman,
the author of the original Emacs editor. GNU Emacs is the most widely used version of
Emacs today.

The GNU® Project is an ongoing effort on the part of the Free Software Foundation
to create a complete, freely distributable, POSIX-compliant computing environment. The
FSF uses the GNU General Public License (GPL) to ensure that its software’s source code
is always available to the end user. A copy of the GPL is included in this book for your
reference (see [GNU General Public License], page 503). The GPL applies to the C language
source code for gawk. To find out more about the FSF and the GNU Project online, see
the GNU Project’s home page. This book may also be read from GNU’s website.

A shell, an editor (Emacs), highly portable optimizing C, C++, and Objective-C com-
pilers, a symbolic debugger and dozens of large and small utilities (such as gawk), have all
been completed and are freely available. The GNU operating system kernel (the HURD),
has been released but remains in an early stage of development.

Until the GNU operating system is more fully developed, you should consider using
GNU/Linux, a freely distributable, Unix-like operating system for Intel, Power Architecture,
Sun SPARC, IBM S/390, and other systems.” Many GNU/Linux distributions are available
for download from the Internet.

The book you are reading is actually free—at least, the information in it is free to anyone.
The machine-readable source code for the book comes with gawk. (Take a moment to check
the Free Documentation License in [GNU Free Documentation License|, page 515.)

The book itself has gone through multiple previous editions. Paul Rubin wrote the very
first draft of The GAWK Manual; it was around 40 pages long. Diane Close and Richard
Stallman improved it, yielding a version that was around 90 pages and barely described the
original, “old” version of awk.

6 GNU stands for “GNU’s Not Unix.”
" The terminology “GNU/Linux” is explained in the [Glossary], page 491.

https://www.gnu.org
https://www.gnu.org/software/gawk/manual/

Preface 11

I started working with that version in the fall of 1988. As work on it progressed, the FSF
published several preliminary versions (numbered 0.x). In 1996, edition 1.0 was released
with gawk 3.0.0. The FSF published the first two editions under the title The GNU Awk
User’s Guide.

This edition maintains the basic structure of the previous editions. For FSF edition 4.0,
the content was thoroughly reviewed and updated. All references to gawk versions prior
to 4.0 were removed. Of significant note for that edition was the addition of Chapter 14
[Debugging awk Programs], page 343.

For FSF edition 4.2, the content has been reorganized into parts, and the major new addi-
tions are Chapter 15 [Arithmetic and Arbitrary-Precision Arithmetic with gawk], page 359,
and Chapter 16 [Writing Extensions for gawk|, page 373.

This book will undoubtedly continue to evolve. If you find an error in the book, please
report it! See Section B.4 [Reporting Problems and Bugs|, page 470, for information on
submitting problem reports electronically.

How to Contribute

As the maintainer of GNU awk, I once thought that I would be able to manage a collection of
publicly available awk programs and I even solicited contributions. Making things available
on the Internet helps keep the gawk distribution down to manageable size.

The initial collection of material, such as it is, is still available at ftp://ftp.
freefriends.org/arnold/Awkstuff.

In the hopes of doing something more broad, I acquired the awklang.org domain. Late
in 2017, a volunteer took on the task of managing it.

If you have written an interesting awk program, that you would like to share with the
rest of the world, please see http://www.awklang.org and use the “Contact” link.

If you have written a gawk extension, please see Section 16.8 [The gawkextlib Project],
page 432.

Acknowledgments
The initial draft of The GAWK Manual had the following acknowledgments:

Many people need to be thanked for their assistance in producing this manual.
Jay Fenlason contributed many ideas and sample programs. Richard Mlynarik
and Robert Chassell gave helpful comments on drafts of this manual. The
paper A Supplemental Document for AWK by John W. Pierce of the Chemistry
Department at UC San Diego, pinpointed several issues relevant both to awk
implementation and to this manual, that would otherwise have escaped us.

I would like to acknowledge Richard M. Stallman, for his vision of a better world and
for his courage in founding the FSF and starting the GNU Project.

Earlier editions of this book had the following acknowledgements:
The following people (in alphabetical order) provided helpful comments on var-
ious versions of this book: Rick Adams, Dr. Nelson H.F. Beebe, Karl Berry,

Dr. Michael Brennan, Rich Burridge, Claire Cloutier, Diane Close, Scott De-
ifik, Christopher (“Topher”) Eliot, Jeffrey Friedl, Dr. Darrel Hankerson, Michal

ftp://ftp.freefriends.org/arnold/Awkstuff
ftp://ftp.freefriends.org/arnold/Awkstuff
http://www.awklang.org

12 GAWK: Effective AWK Programming

Jaegermann, Dr. Richard J. LeBlanc, Michael Lijewski, Pat Rankin, Miriam
Robbins, Mary Sheehan, and Chuck Toporek.

Robert J. Chassell provided much valuable advice on the use of Texinfo. He
also deserves special thanks for convincing me not to title this book How to
Gawk Politely. Karl Berry helped significantly with the TEX part of Texinfo.

I would like to thank Marshall and Elaine Hartholz of Seattle and Dr. Bert
and Rita Schreiber of Detroit for large amounts of quiet vacation time in their
homes, which allowed me to make significant progress on this book and on gawk
itself.

Phil Hughes of SSC contributed in a very important way by loaning me his
laptop GNU/Linux system, not once, but twice, which allowed me to do a lot
of work while away from home.

David Trueman deserves special credit; he has done a yeoman job of evolving
gawk so that it performs well and without bugs. Although he is no longer
involved with gawk, working with him on this project was a significant pleasure.

The intrepid members of the GNITS mailing list, and most notably Ulrich
Drepper, provided invaluable help and feedback for the design of the interna-
tionalization features.

Chuck Toporek, Mary Sheehan, and Claire Cloutier of O’Reilly & Associates
contributed significant editorial help for this book for the 3.1 release of gawk.

Dr. Nelson Beebe, Andreas Buening, Dr. Manuel Collado, Antonio Colombo, Stephen
Davies, Scott Deifik, Akim Demaille, Daniel Richard G., Juan Manuel Guerrero, Darrel
Hankerson, Michal Jaegermann, Jiirgen Kahrs, Stepan Kasal, John Malmberg, Dave Pitts,
Chet Ramey, Pat Rankin, Andrew Schorr, Corinna Vinschen, and Eli Zaretskii (in alpha-
betical order) make up the current gawk “crack portability team.” Without their hard work
and help, gawk would not be nearly the robust, portable program it is today. It has been
and continues to be a pleasure working with this team of fine people.

Notable code and documentation contributions were made by a number of people. See
Section A.9 [Major Contributors to gawk|, page 452, for the full list.

Thanks to Michael Brennan for the Forewords.

Thanks to Patrice Dumas for the new makeinfo program. Thanks to Karl Berry, who
continues to work to keep the Texinfo markup language sane.

Robert P.J. Day, Michael Brennan, and Brian Kernighan kindly acted as reviewers for
the 2015 edition of this book. Their feedback helped improve the final work.

I would also like to thank Brian Kernighan for his invaluable assistance during the testing
and debugging of gawk, and for his ongoing help and advice in clarifying numerous points
about the language. We could not have done nearly as good a job on either gawk or its
documentation without his help.

Brian is in a class by himself as a programmer and technical author. I have to thank him
(vet again) for his ongoing friendship and for being a role model to me for close to 30 years!
Having him as a reviewer is an exciting privilege. It has also been extremely humbling. . .

I must thank my wonderful wife, Miriam, for her patience through the many versions of
this project, for her proofreading, and for sharing me with the computer. I would like to
thank my parents for their love, and for the grace with which they raised and educated me.

Preface 13

Finally, I also must acknowledge my gratitude to G-d, for the many opportunities He has
sent my way, as well as for the gifts He has given me with which to take advantage of those
opportunities.

Arnold Robbins
Nof Ayalon
Israel

February 2015

Part I:
The awk Language

Chapter 1: Getting Started with awk 17

1 Getting Started with awk

The basic function of awk is to search files for lines (or other units of text) that contain
certain patterns. When a line matches one of the patterns, awk performs specified actions
on that line. awk continues to process input lines in this way until it reaches the end of the
input files.

Programs in awk are different from programs in most other languages, because awk
programs are data driven (i.e., you describe the data you want to work with and then what
to do when you find it). Most other languages are procedural; you have to describe, in great
detail, every step the program should take. When working with procedural languages, it is
usually much harder to clearly describe the data your program will process. For this reason,
awk programs are often refreshingly easy to read and write.

When you run awk, you specify an awk program that tells awk what to do. The program
consists of a series of rules (it may also contain function definitions, an advanced feature
that we will ignore for now; see Section 9.2 [User-Defined Functions|, page 213). Each rule
specifies one pattern to search for and one action to perform upon finding the pattern.

Syntactically, a rule consists of a pattern followed by an action. The action is enclosed
in braces to separate it from the pattern. Newlines usually separate rules. Therefore, an
awk program looks like this:

pattern { action }
pattern { action }

1.1 How to Run awk Programs
There are several ways to run an awk program. If the program is short, it is easiest to
include it in the command that runs awk, like this:
awk ’program’ input-filel input-file2 ...
When the program is long, it is usually more convenient to put it in a file and run it
with a command like this:
awk -f program-file input-filel input-file2 ...

This section discusses both mechanisms, along with several variations of each.

1.1.1 One-Shot Throwaway awk Programs

Once you are familiar with awk, you will often type in simple programs the moment you want
to use them. Then you can write the program as the first argument of the awk command,
like this:

awk ’program’ input-filel input-file2 ...
where program consists of a series of patterns and actions, as described earlier.
This command format instructs the shell, or command interpreter, to start awk and use
the program to process records in the input file(s). There are single quotes around program
so the shell won’t interpret any awk characters as special shell characters. The quotes also

cause the shell to treat all of program as a single argument for awk, and allow program to
be more than one line long.

18 GAWK: Effective AWK Programming

This format is also useful for running short or medium-sized awk programs from shell
scripts, because it avoids the need for a separate file for the awk program. A self-contained
shell script is more reliable because there are no other files to misplace.

Later in this chapter, in Section 1.3 [Some Simple Examples|, page 24, we’ll see examples
of several short, self-contained programs.

1.1.2 Running awk Without Input Files
You can also run awk without any input files. If you type the following command line:
awk ’program’

awk applies the program to the standard input, which usually means whatever you type
on the keyboard. This continues until you indicate end-of-file by typing Ctrl-d. (On
non-POSIX operating systems, the end-of-file character may be different.)

As an example, the following program prints a friendly piece of advice (from Douglas
Adams’s The Hitchhiker’s Guide to the Galaxy), to keep you from worrying about the
complexities of computer programming:

$ awk ’BEGIN { print "Don\47t Panic!" }’
- Don’t Panic!

awk executes statements associated with BEGIN before reading any input. If there are
no other statements in your program, as is the case here, awk just stops, instead of trying
to read input it doesn’t know how to process. The ‘\47’ is a magic way (explained later)
of getting a single quote into the program, without having to engage in ugly shell quoting
tricks.

NOTE: If you use Bash as your shell, you should execute the command ‘set +H’
before running this program interactively, to disable the C shell-style command
history, which treats ‘!’ as a special character. We recommend putting this
command into your personal startup file.

This next simple awk program emulates the cat utility; it copies whatever you type on
the keyboard to its standard output (why this works is explained shortly):

$ awk ’{ print }’

Now is the time for all good men

- Now is the time for all good men

to come to the aid of their country.

- to come to the aid of their country.
Four score and seven years ago,

-| Four score and seven years ago,
What, me worry?

- What, me worry?

Ctri-d

1.1.3 Running Long Programs

Sometimes awk programs are very long. In these cases, it is more convenient to put the
program into a separate file. In order to tell awk to use that file for its program, you type:

awk -f source-file input-filel input-file2 ...

Chapter 1: Getting Started with awk 19

The -f instructs the awk utility to get the awk program from the file source-file (see
Section 2.2 [Command-Line Options|, page 31). Any file name can be used for source-file.
For example, you could put the program:

BEGIN { print "Don’t Panic!" }
into the file advice. Then this command:
awk -f advice
does the same thing as this one:
awk ’BEGIN { print "Don\47t Panic!" }’

This was explained earlier (see Section 1.1.2 [Running awk Without Input Files|, page 18).
Note that you don’t usually need single quotes around the file name that you specify with
-f, because most file names don’t contain any of the shell’s special characters. Notice that in
advice, the awk program did not have single quotes around it. The quotes are only needed
for programs that are provided on the awk command line. (Also, placing the program in a
file allows us to use a literal single quote in the program text, instead of the magic ‘\47’.)

If you want to clearly identify an awk program file as such, you can add the extension
.awk to the file name. This doesn’t affect the execution of the awk program but it does
make “housekeeping” easier.

1.1.4 Executable awk Programs

Once you have learned awk, you may want to write self-contained awk scripts, using the ‘#!’
script mechanism. You can do this on many systems.! For example, you could update the
file advice to look like this:

#! /bin/awk -f

BEGIN { print "Don’t Panic!" }

After making this file executable (with the chmod utility), simply type ‘advice’ at the shell
and the system arranges to run awk as if you had typed ‘awk -f advice’:

$ chmod +x advice
$ advice
-4 Don’t Panic!

(We assume you have the current directory in your shell’s search path variable [typically
$PATH]. If not, you may need to type ‘./advice’ at the shell.)

Self-contained awk scripts are useful when you want to write a program that users can
invoke without their having to know that the program is written in awk.

1 The ‘41’ mechanism works on GNU /Linux systems, BSD-based systems, and commercial Unix systems.

20 GAWK: Effective AWK Programming

(7
Understanding ‘#!’

awk is an interpreted language. This means that the awk utility reads your program and
then processes your data according to the instructions in your program. (This is different
from a compiled language such as C, where your program is first compiled into machine
code that is executed directly by your system’s processor.) The awk utility is thus termed
an interpreter. Many modern languages are interpreted.

The line beginning with ‘#!’ lists the full file name of an interpreter to run and a single
optional initial command-line argument to pass to that interpreter. The operating system
then runs the interpreter with the given argument and the full argument list of the executed
program. The first argument in the list is the full file name of the awk program. The rest
of the argument list contains either options to awk, or data files, or both. (Note that on
many systems awk may be found in /usr/bin instead of in /bin.)

Some systems limit the length of the interpreter name to 32 characters. Often, this can
be dealt with by using a symbolic link.

You should not put more than one argument on the ‘#!’ line after the path to awk. It
does not work. The operating system treats the rest of the line as a single argument and
passes it to awk. Doing this leads to confusing behavior—most likely a usage diagnostic of
some sort from awk.

Finally, the value of ARGV[0] (see Section 7.5 [Predefined Variables|, page 157) varies
depending upon your operating system. Some systems put ‘awk’ there, some put the full
pathname of awk (such as /bin/awk), and some put the name of your script (‘advice’).

Don’t rely on the value of ARGV[0] to provide your script name.
\ J

1.1.5 Comments in awk Programs

A comment is some text that is included in a program for the sake of human readers; it
is not really an executable part of the program. Comments can explain what the program
does and how it works. Nearly all programming languages have provisions for comments,
as programs are typically hard to understand without them.

In the awk language, a comment starts with the number sign character (‘4’) and continues
to the end of the line. The ‘#" does not have to be the first character on the line. The awk
language ignores the rest of a line following a number sign. For example, we could have put
the following into advice:

This program prints a nice, friendly message. It helps
keep novice users from being afraid of the computer.
BEGIN { print "Don’t Panic!" }

You can put comment lines into keyboard-composed throwaway awk programs, but this
usually isn’t very useful; the purpose of a comment is to help you or another person under-
stand the program when reading it at a later time.

CAUTION: As mentioned in Section 1.1.1 [One-Shot Throwaway awk Pro-
grams|, page 17, you can enclose short to medium-sized programs in single
quotes, in order to keep your shell scripts self-contained. When doing so, don’t
put an apostrophe (i.e., a single quote) into a comment (or anywhere else in
your program). The shell interprets the quote as the closing quote for the en-
tire program. As a result, usually the shell prints a message about mismatched

Chapter 1: Getting Started with awk 21

quotes, and if awk actually runs, it will probably print strange messages about
syntax errors. For example, look at the following;:

$ awk ’BEGIN { print "hello" } # let’s be cute’
>

The shell sees that the first two quotes match, and that a new quoted object
begins at the end of the command line. It therefore prompts with the secondary
prompt, waiting for more input. With Unix awk, closing the quoted string
produces this result:

$ awk ’{ print "hello" } # let’s be cute’
> J

awk: can’t open file be

source line number 1

Putting a backslash before the single quote in ‘let’s’ wouldn’t help, because
backslashes are not special inside single quotes. The next subsection describes
the shell’s quoting rules.

1.1.6 Shell Quoting Issues

For short to medium-length awk programs, it is most convenient to enter the program on
the awk command line. This is best done by enclosing the entire program in single quotes.
This is true whether you are entering the program interactively at the shell prompt, or
writing it as part of a larger shell script:

awk ’program text’ input-filel input-file2 ...

Once you are working with the shell, it is helpful to have a basic knowledge of shell
quoting rules. The following rules apply only to POSIX-compliant, Bourne-style shells
(such as Bash, the GNU Bourne-Again Shell). If you use the C shell, you're on your own.

Before diving into the rules, we introduce a concept that appears throughout this book,
which is that of the null, or empty, string.

The null string is character data that has no value. In other words, it is empty. It

is written in awk programs like this: "". In the shell, it can be written using single or
double quotes: "" or ’’. Although the null string has no characters in it, it does exist. For
example, consider this command:

$ echo nn

Here, the echo utility receives a single argument, even though that argument has no char-
acters in it. In the rest of this book, we use the terms null string and empty string inter-
changeably. Now, on to the quoting rules:

e Quoted items can be concatenated with nonquoted items as well as with other quoted
items. The shell turns everything into one argument for the command.

e Preceding any single character with a backslash (‘\’) quotes that character. The shell
removes the backslash and passes the quoted character on to the command.

e Single quotes protect everything between the opening and closing quotes. The shell
does no interpretation of the quoted text, passing it on verbatim to the command. It is
impossible to embed a single quote inside single-quoted text. Refer back to Section 1.1.5
[Comments in awk Programs|, page 20, for an example of what happens if you try.

22 GAWK: Effective AWK Programming

e Double quotes protect most things between the opening and closing quotes. The shell
does at least variable and command substitution on the quoted text. Different shells
may do additional kinds of processing on double-quoted text.

Because certain characters within double-quoted text are processed by the shell, they
must be escaped within the text. Of note are the characters ‘¢’, ‘“’, ‘\’, and ‘", all
of which must be preceded by a backslash within double-quoted text if they are to be
passed on literally to the program. (The leading backslash is stripped first.) Thus, the
example seen previously in Section 1.1.2 [Running awk Without Input Files], page 18:
awk ’BEGIN { print "Don\47t Panic!" }’
could instead be written this way:
$ awk "BEGIN { print \"Don’t Panic!/\" }"
- Don’t Panic!
Note that the single quote is not special within double quotes.

e Null strings are removed when they occur as part of a non-null command-line argument,
while explicit null objects are kept. For example, to specify that the field separator FS
should be set to the null string, use:

awk -F "" ’program’ files # correct
Don’t use this:
awk -F"" ’program’ files # wrong!
In the second case, awk attempts to use the text of the program as the value of FS, and
the first file name as the text of the program! This results in syntax errors at best, and
confusing behavior at worst.
Mixing single and double quotes is difficult. You have to resort to shell quoting tricks,
like this:
$ awk ’BEGIN { print "Here is a single quote <’"’"’>" }7’
- Here is a single quote <’>
This program consists of three concatenated quoted strings. The first and the third are
single-quoted, and the second is double-quoted.
This can be “simplified” to:
$ awk ’BEGIN { print "Here is a single quote <’\’’>" }’
- Here is a single quote <’>
Judge for yourself which of these two is the more readable.
Another option is to use double quotes, escaping the embedded, awk-level double quotes:
$ awk "BEGIN { print \"Here is a single quote <’>\" }"
- Here is a single quote <’>
This option is also painful, because double quotes, backslashes, and dollar signs are very
common in more advanced awk programs.
A third option is to use the octal escape sequence equivalents (see Section 3.2 [Escape
Sequences], page 48) for the single- and double-quote characters, like so:
$ awk ’BEGIN { print "Here is a single quote <\47>" }’
- Here is a single quote <’>
$ awk ’BEGIN { print "Here is a double quote <\42>" 1}’
-| Here is a double quote <">

Chapter 1: Getting Started with awk 23

This works nicely, but you should comment clearly what the escapes mean.
A fourth option is to use command-line variable assignment, like this:
$ awk -v sq="’" ’BEGIN { print "Here is a single quote <" sq ">" }’
- Here is a single quote <’>
(Here, the two string constants and the value of sq are concatenated into a single string
that is printed by print.)
If you really need both single and double quotes in your awk program, it is probably best
to move it into a separate file, where the shell won’t be part of the picture and you can say
what you mean.

1.1.6.1 Quoting in MS-Windows Batch Files

Although this book generally only worries about POSIX systems and the POSIX shell, the
following issue arises often enough for many users that it is worth addressing.

The “shells” on Microsoft Windows systems use the double-quote character for quot-
ing, and make it difficult or impossible to include an escaped double-quote character in
a command-line script. The following example, courtesy of Jeroen Brink, shows how to
escape the double quotes from this one liner script that prints all lines in a file surrounded
by double quotes:

{ print "\"" $0 "\"" }
In an MS-Windows command-line the one-liner script above may be passed as follows:
gawk "{ print \"\042\" $0 \"\042\" }" file
In this example the ‘\042’ is the octal code for a double-quote; gawk converts it into a
real double-quote for output by the print statement.

In MS-Windows escaping double-quotes is a little tricky because you use backslashes to
escape double-quotes, but backslashes themselves are not escaped in the usual way; indeed
they are either duplicated or not, depending upon whether there is a subsequent double-
quote. The MS-Windows rule for double-quoting a string is the following:

1. For each double quote in the original string, let N be the number of backslash(es)
before it, N might be zero. Replace these N backslash(es) by 2 x N + 1 backslash(es)

2. Let N be the number of backslash(es) tailing the original string, N might be zero.
Replace these N backslash(es) by 2 x N backslash(es)

3. Surround the resulting string by double-quotes.
So to double-quote the one-liner script ‘{ print "\"" $0 "\"" }’ from the previous ex-
ample you would do it this way:
gawk ||{ print \ll\\\ll\ll $O \||\\\n\|| }ll f11e
However, the use of ‘\042’ instead of ‘\\\"’ is also possible and easier to read, because
backslashes that are not followed by a double-quote don’t need duplication.

1.2 Data files for the Examples

Many of the examples in this book take their input from two sample data files. The first,
mail-list, represents a list of peoples’ names together with their email addresses and
information about those people. The second data file, called inventory-shipped, contains
information about monthly shipments. In both files, each line is considered to be one record.

24 GAWK: Effective AWK Programming

In mail-list, each record contains the name of a person, his/her phone number, his/her
email address, and a code for his/her relationship with the author of the list. The columns
are aligned using spaces. An ‘A’ in the last column means that the person is an acquaintance.
An ‘F’ in the last column means that the person is a friend. An ‘R’ means that the person
is a relative:

Amelia 555-5553 amelia.zodiacusque@gmail.com F
Anthony 555-3412 anthony.asserturo@hotmail.com A
Becky 555-7685 becky.algebrarum@gmail.com A
Bill 555-1675 bill.drowning@hotmail.com A
Broderick 555-0542 broderick.aliquotiens@yahoo.com R
Camilla 555-2912 camilla.infusarum@skynet.be R
Fabius 555-1234 fabius.undevicesimus@ucb.edu F
Julie 555-6699 julie.perscrutabor@skeeve.com F
Martin 555-6480 martin.codicibus@hotmail.com A
Samuel 555-3430 samuel .lanceolis@shu.edu A
Jean-Paul 555-2127 jeanpaul . campanorum@nyu.edu R

The data file inventory-shipped represents information about shipments during the
year. Each record contains the month, the number of green crates shipped, the number of
red boxes shipped, the number of orange bags shipped, and the number of blue packages
shipped, respectively. There are 16 entries, covering the 12 months of last year and the first
four months of the current year. An empty line separates the data for the two years:

Jan 13 25 15 115
Feb 15 32 24 226
Mar 15 24 34 228
Apr 31 52 63 420
May 16 34 29 208
Jun 31 42 75 492
Jul 24 34 67 436
Aug 15 34 47 316
Sep 13 55 37 277
Oct 29 54 68 525
Nov 20 87 82 577
Dec 17 35 61 401

Jan 21 36 64 620
Feb 26 58 80 652
Mar 24 75 70 495
Apr 21 70 74 514

The sample files are included in the gawk distribution, in the directory awklib/eg/data

1.3 Some Simple Examples

The following command runs a simple awk program that searches the input file mail-list
for the character string ‘1i’ (a grouping of characters is usually called a string; the term
string is based on similar usage in English, such as “a string of pearls” or “a string of cars
in a train”):

Chapter 1: Getting Started with awk 25

awk ’/1i/ { print $0 }’ mail-list
When lines containing ‘1i’ are found, they are printed because ‘print $0’ means print the

current line. (Just ‘print’ by itself means the same thing, so we could have written that
instead.)

You will notice that slashes (‘/’) surround the string ‘1i’ in the awk program. The slashes
indicate that ‘1i’ is the pattern to search for. This type of pattern is called a regular
expression, which is covered in more detail later (see Chapter 3 [Regular Expressions],
page 47). The pattern is allowed to match parts of words. There are single quotes around
the awk program so that the shell won’t interpret any of it as special shell characters.

Here is what this program prints:

$ awk ’/1i/ { print $0 }’ mail-list

- Amelia 555-5553 amelia.zodiacusque@gmail.com F
- Broderick 555-0542 broderick.aliquotiens@yahoo.com R
- Julie 555-6699 julie.perscrutabor@skeeve.com F
-1 Samuel 555-3430 samuel.lanceolis@shu.edu A

In an awk rule, either the pattern or the action can be omitted, but not both. If the
pattern is omitted, then the action is performed for every input line. If the action is omitted,
the default action is to print all lines that match the pattern.

Thus, we could leave out the action (the print statement and the braces) in the previous
example and the result would be the same: awk prints all lines matching the pattern ‘1i’.
By comparison, omitting the print statement but retaining the braces makes an empty
action that does nothing (i.e., no lines are printed).

Many practical awk programs are just a line or two long. Following is a collection of
useful, short programs to get you started. Some of these programs contain constructs that
haven’t been covered yet. (The description of the program will give you a good idea of what
is going on, but you’ll need to read the rest of the book to become an awk expert!) Most
of the examples use a data file named data. This is just a placeholder; if you use these
programs yourself, substitute your own file names for data. For future reference, note that
there is often more than one way to do things in awk. At some point, you may want to
look back at these examples and see if you can come up with different ways to do the same
things shown here:

e Print every line that is longer than 80 characters:
awk ’length($0) > 80’ data
The sole rule has a relational expression as its pattern and has no action—so it uses
the default action, printing the record.
e Print the length of the longest input line:
awk ’{ if (length($0) > max) max = length($0)
END { print max }’ data

The code associated with END executes after all input has been read; it’s the other side
of the coin to BEGIN.

e Print the length of the longest line in data:

expand data | awk ’{ if (x < length($0)) x = length($0) }
END { print "maximum line length is " x }’

26 GAWK: Effective AWK Programming

This example differs slightly from the previous one: the input is processed by the
expand utility to change TABs into spaces, so the widths compared are actually the
right-margin columns, as opposed to the number of input characters on each line.

e Print every line that has at least one field:
awk ’NF > 0’ data

This is an easy way to delete blank lines from a file (or rather, to create a new file
similar to the old file but from which the blank lines have been removed).

e Print seven random numbers from 0 to 100, inclusive:
awk ’BEGIN { for (i = 1; i <= 7; i++)
print int(101 * rand()) }’
e Print the total number of bytes used by files:

1ls -1 files | awk ’{ x += $5 }
END { print "total bytes: " x }’

e Print the total number of kilobytes used by files:

1ls -1 files | awk ’{ x += $5 }
END { print "total K-bytes:", x / 1024 }’

e Print a sorted list of the login names of all users:

awk -F: ’{ print $1 }’ /etc/passwd | sort
e Count the lines in a file:

awk ’END { print NR }’ data
e Print the even-numbered lines in the data file:

awk ’NR % 2 == 0’ data

If you used the expression ‘NR % 2 == 1’ instead, the program would print the odd-
numbered lines.

1.4 An Example with Two Rules

The awk utility reads the input files one line at a time. For each line, awk tries the patterns
of each rule. If several patterns match, then several actions execute in the order in which
they appear in the awk program. If no patterns match, then no actions run.

After processing all the rules that match the line (and perhaps there are none), awk
reads the next line. (However, see Section 7.4.8 [The next Statement]|, page 154, and also
see Section 7.4.9 [The nextfile Statement|, page 155.) This continues until the program
reaches the end of the file. For example, the following awk program contains two rules:

/12/ { print $0 }
/21/ { print $0 }

The first rule has the string ‘12’ as the pattern and ‘print $0’ as the action. The second
rule has the string ‘21’ as the pattern and also has ‘print $0’ as the action. Each rule’s
action is enclosed in its own pair of braces.

This program prints every line that contains the string ‘12’ or the string ‘21°. If a line
contains both strings, it is printed twice, once by each rule.

Chapter 1: Getting Started with awk 27

This is what happens if we run this program on our two sample data files, mail-list
and inventory-shipped:

$ awk ’/12/ { print $0 }

> /21/ { print $0 }’ mail-list inventory-shipped

- Anthony 5565-3412 anthony.asserturo@hotmail.com A
- Camilla 555-2912 camilla.infusarum@skynet.be R
-1 Fabius 555-1234 fabius.undevicesimus@ucb.edu F
- Jean-Paul 555-2127 jeanpaul . campanorum@nyu.edu R
- Jean-Paul 555-2127 jeanpaul . campanorum@nyu.edu R
- Jan 21 36 64 620

- Apr 21 70 74 514

Note how the line beginning with ‘Jean-Paul’ in mail-list was printed twice, once for
each rule.

1.5 A More Complex Example

Now that we’ve mastered some simple tasks, let’s look at what typical awk programs do.
This example shows how awk can be used to summarize, select, and rearrange the output of
another utility. It uses features that haven’t been covered yet, so don’t worry if you don’t
understand all the details:

ls -1 | awk ’$6 == "Nov" { sum += $5 }
END { print sum }’

This command prints the total number of bytes in all the files in the current directory
that were last modified in November (of any year). The ‘ls -1’ part of this example is a
system command that gives you a listing of the files in a directory, including each file’s size
and the date the file was last modified. Its output looks like this:

-rw-r--r-- 1 arnold user 1933 Nov 7 13:05 Makefile
-rw-r--r-—- 1 arnold user 10809 Nov 7 13:03 awk.h
-rw-r--r—— 1 arnold user 983 Apr 13 12:14 awk.tab.h
-rw-r——r—— 1 arnold user 31869 Jun 15 12:20 awkgram.y
-rw-r—--r—-—- 1 arnold user 22414 Nov 7 13:03 awkl.c
-rw-r--r--— 1 arnold user 37455 Nov 7 13:03 awk2.c
-rw-r--r-—- 1 arnold user 27511 Dec 9 13:07 awk3.c
-rw-r—--r-— 1 arnold user 7989 Nov 7 13:03 awké4.c

The first field contains read-write permissions, the second field contains the number of links
to the file, and the third field identifies the file’s owner. The fourth field identifies the file’s
group. The fifth field contains the file’s size in bytes. The sixth, seventh, and eighth fields
contain the month, day, and time, respectively, that the file was last modified. Finally, the
ninth field contains the file name.

The ‘$6 == "Nov"’ in our awk program is an expression that tests whether the sixth field
of the output from ‘ls -1’ matches the string ‘Nov’. Each time a line has the string ‘Nov’
for its sixth field, awk performs the action ‘sum += $5’. This adds the fifth field (the file’s
size) to the variable sum. As a result, when awk has finished reading all the input lines, sum
is the total of the sizes of the files whose lines matched the pattern. (This works because
awk variables are automatically initialized to zero.)

28 GAWK: Effective AWK Programming

After the last line of output from 1s has been processed, the END rule executes and prints
the value of sum. In this example, the value of sum is 80600.

These more advanced awk techniques are covered in later sections (see Section 7.3 [Ac-
tions|, page 147). Before you can move on to more advanced awk programming, you have to
know how awk interprets your input and displays your output. By manipulating fields and
using print statements, you can produce some very useful and impressive-looking reports.

1.6 awk Statements Versus Lines

Most often, each line in an awk program is a separate statement or separate rule, like this:

awk ’/12/ { print $0 }
/21/ { print $0 }’ mail-list inventory-shipped

However, gawk ignores newlines after any of the following symbols and keywords:
) { ? : |l && do else
A newline at any other point is considered the end of the statement.?

If you would like to split a single statement into two lines at a point where a newline
would terminate it, you can continue it by ending the first line with a backslash character
(‘\’). The backslash must be the final character on the line in order to be recognized as
a continuation character. A backslash is allowed anywhere in the statement, even in the
middle of a string or regular expression. For example:

awk ’/This regular expression is too long, so continue it\
on the next line/ { print $1 }’

We have generally not used backslash continuation in our sample programs. gawk places
no limit on the length of a line, so backslash continuation is never strictly necessary; it
just makes programs more readable. For this same reason, as well as for clarity, we have
kept most statements short in the programs presented throughout the book. Backslash
continuation is most useful when your awk program is in a separate source file instead of
entered from the command line. You should also note that many awk implementations are
more particular about where you may use backslash continuation. For example, they may
not allow you to split a string constant using backslash continuation. Thus, for maximum
portability of your awk programs, it is best not to split your lines in the middle of a regular
expression or a string.

CAUTION: Backslash continuation does not work as described with the C shell.
It works for awk programs in files and for one-shot programs, provided you are
using a POSIX-compliant shell, such as the Unix Bourne shell or Bash. But
the C shell behaves differently! There you must use two backslashes in a row,
followed by a newline. Note also that when using the C shell, every newline in
your awk program must be escaped with a backslash. To illustrate:

% awk °BEGIN { \

? print \\
? "hello, world" \
7}
2 The ‘?” and ‘:’ referred to here is the three-operand conditional expression described in Section 6.3.4

[Conditional Expressions|, page 134. Splitting lines after ‘7’ and ‘:’ is a minor gawk extension; if ~-posix
is specified (see Section 2.2 [Command-Line Options|, page 31), then this extension is disabled.

Chapter 1: Getting Started with awk 29

< hello, world

Here, the ‘%’ and ‘?’ are the C shell’s primary and secondary prompts, analogous
to the standard shell’s ‘¢’ and *>’.

Compare the previous example to how it is done with a POSIX-compliant shell:

$ awk ’BEGIN {

> print \

> "hello, world"

> 3}

- hello, world

awk is a line-oriented language. Each rule’s action has to begin on the same line as

the pattern. To have the pattern and action on separate lines, you must use backslash
continuation; there is no other option.

Another thing to keep in mind is that backslash continuation and comments do not mix.
As soon as awk sees the ‘#’ that starts a comment, it ignores everything on the rest of the
line. For example:

$ gawk ’BEGIN { print "dont panic" # a friendly \

> BEGIN rule

>}’

gawk: cmd. line:2: BEGIN rule
gawk: cmd. line:2: ~ syntax error

In this case, it looks like the backslash would continue the comment onto the next line.
However, the backslash-newline combination is never even noticed because it is “hidden”
inside the comment. Thus, the BEGIN is noted as a syntax error.

When awk statements within one rule are short, you might want to put more than one of
them on a line. This is accomplished by separating the statements with a semicolon (‘;’).
This also applies to the rules themselves. Thus, the program shown at the start of this

section could also be written this way:
/12/ { print $0 } ; /21/ { print $0 }

NOTE: The requirement that states that rules on the same line must be sepa-
rated with a semicolon was not in the original awk language; it was added for
consistency with the treatment of statements within an action.

1.7 Other Features of awk

The awk language provides a number of predefined, or built-in, variables that your programs
can use to get information from awk. There are other variables your program can set as
well to control how awk processes your data.

In addition, awk provides a number of built-in functions for doing common computa-
tional and string-related operations. gawk provides built-in functions for working with
timestamps, performing bit manipulation, for runtime string translation (internationaliza-
tion), determining the type of a variable, and array sorting.

As we develop our presentation of the awk language, we will introduce most of the
variables and many of the functions. They are described systematically in Section 7.5
[Predefined Variables], page 157, and in Section 9.1 [Built-in Functions], page 187.

30 GAWK: Effective AWK Programming

1.8 When to Use awk

Now that you've seen some of what awk can do, you might wonder how awk could be
useful for you. By using utility programs, advanced patterns, field separators, arithmetic
statements, and other selection criteria, you can produce much more complex output. The
awk language is very useful for producing reports from large amounts of raw data, such as
summarizing information from the output of other utility programs like 1s. (See Section 1.5
[A More Complex Example|, page 27.)

Programs written with awk are usually much smaller than they would be in other lan-
guages. This makes awk programs easy to compose and use. Often, awk programs can
be quickly composed at your keyboard, used once, and thrown away. Because awk pro-
grams are interpreted, you can avoid the (usually lengthy) compilation part of the typical
edit-compile-test-debug cycle of software development.

Complex programs have been written in awk, including a complete retargetable assem-
bler for eight-bit microprocessors (see |Glossary], page 491, for more information), and a
microcode assembler for a special-purpose Prolog computer. The original awk’s capabilities
were strained by tasks of such complexity, but modern versions are more capable.

If you find yourself writing awk scripts of more than, say, a few hundred lines, you might
consider using a different programming language. The shell is good at string and pattern
matching; in addition, it allows powerful use of the system utilities. Python offers a nice
balance between high-level ease of programming and access to system facilities.?

1.9 Summary

e Programs in awk consist of pattern—action pairs.

e An action without a pattern always runs. The default action for a pattern without one
is ‘{ print $0 }.

e Use either ‘awk ’program’ files’ or ‘awk —-f program-file files’ to run awk.

e You may use the special ‘#!’ header line to create awk programs that are directly
executable.

e Comments in awk programs start with ‘#’ and continue to the end of the same line.

e Be aware of quoting issues when writing awk programs as part of a larger shell script
(or MS-Windows batch file).

e You may use backslash continuation to continue a source line. Lines are automatically
continued after a comma, open brace, question mark, colon, ‘| |’, ‘&&’, do, and else.

3 Other popular scripting languages include Ruby and Perl.

Chapter 2: Running awk and gawk 31

2 Running awk and gawk

This chapter covers how to run awk, both POSIX-standard and gawk-specific command-line
options, and what awk and gawk do with nonoption arguments. It then proceeds to cover
how gawk searches for source files, reading standard input along with other files, gawk’s en-
vironment variables, gawk’s exit status, using include files, and obsolete and undocumented
options and/or features.

Many of the options and features described here are discussed in more detail later in the
book; feel free to skip over things in this chapter that don’t interest you right now.

2.1 Invoking awk

There are two ways to run awk—with an explicit program or with one or more program
files. Here are templates for both of them; items enclosed in [...] in these templates are
optional:
awk [options| -f progfile [--] file . ..
awk [options| [--| ’program’ file . ..
In addition to traditional one-letter POSIX-style options, gawk also supports GNU long
options.

It is possible to invoke awk with an empty program:
awk ’’ datafilel datafile2

Doing so makes little sense, though; awk exits silently when given an empty program. If
--lint has been specified on the command line, gawk issues a warning that the program is
empty.

2.2 Command-Line Options

Options begin with a dash and consist of a single character. GNU-style long options consist
of two dashes and a keyword. The keyword can be abbreviated, as long as the abbreviation
allows the option to be uniquely identified. If the option takes an argument, either the
keyword is immediately followed by an equals sign (‘=’) and the argument’s value, or the
keyword and the argument’s value are separated by whitespace. If a particular option with
a value is given more than once, it is the last value that counts.

Each long option for gawk has a corresponding POSIX-style short option. The long
and short options are interchangeable in all contexts. The following list describes options
mandated by the POSIX standard:

-F fs

--field-separator fs
Set the FS variable to fs (see Section 4.5 [Specifying How Fields Are Separated],
page 69).

-f source-file

-—file source-file
Read the awk program source from source-file instead of in the first nonoption
argument. This option may be given multiple times; the awk program consists
of the concatenation of the contents of each specified source-file.

32 GAWK: Effective AWK Programming

-v var=val

-—assign var=val

Set the variable var to the value val before execution of the program begins.
Such variable values are available inside the BEGIN rule (see Section 2.3 [Other
Command-Line Arguments|, page 38).
The -v option can only set one variable, but it can be used more than once,
setting another variable each time, like this: ‘awk -v foo=1 -v bar=2
CAUTION: Using -v to set the values of the built-in variables may
lead to surprising results. awk will reset the values of those variables
as it needs to, possibly ignoring any initial value you may have
given.

-W gawk-opt

Provide an implementation-specific option. This is the POSIX convention for
providing implementation-specific options. These options also have correspond-
ing GNU-style long options. Note that the long options may be abbreviated, as
long as the abbreviations remain unique. The full list of gawk-specific options
is provided next.

Signal the end of the command-line options. The following arguments are not
treated as options even if they begin with ‘~’. This interpretation of —- follows
the POSIX argument parsing conventions.

This is useful if you have file names that start with ‘-’ or in shell scripts, if
you have file names that will be specified by the user that could start with ‘- .
It is also useful for passing options on to the awk program; see Section 10.4
[Processing Command-Line Options|, page 250.

The following list describes gawk-specific options:

-b

--characters-as-bytes

-C

Cause gawk to treat all input data as single-byte characters. In addition, all
output written with print or printf is treated as single-byte characters.

Normally, gawk follows the POSIX standard and attempts to process its input
data according to the current locale (see Section 6.6 [Where You Are Makes a
Difference], page 137). This can often involve converting multibyte characters
into wide characters (internally), and can lead to problems or confusion if the
input data does not contain valid multibyte characters. This option is an easy
way to tell gawk, “Hands off my data!”

—--traditional

-C

Specify compatibility mode, in which the GNU extensions to the awk language
are disabled, so that gawk behaves just like BWK awk. See Section A.5 [Exten-
sions in gawk Not in POSIX awk], page 441, which summarizes the extensions.
Also see Section C.1 [Downward Compatibility and Debugging], page 475.

-—copyright

Print the short version of the General Public License and then exit.

~-d|[file]

Chapter 2: Running awk and gawk 33

--dump-variables|=file]

-D|[file]

Print a sorted list of global variables, their types, and final values to file. If
no file is provided, print this list to a file named awkvars.out in the current
directory. No space is allowed between the -d and file, if file is supplied.

Having a list of all global variables is a good way to look for typographical
errors in your programs. You would also use this option if you have a large
program with a lot of functions, and you want to be sure that your functions
don’t inadvertently use global variables that you meant to be local. (This is a
particularly easy mistake to make with simple variable names like i, j, etc.)

--debug|[=file]

Enable debugging of awk programs (see Section 14.1 [Introduction to the gawk
Debugger|, page 343). By default, the debugger reads commands interactively
from the keyboard (standard input). The optional file argument allows you to
specify a file with a list of commands for the debugger to execute noninterac-
tively. No space is allowed between the -D and file, if file is supplied.

—e program-text
—-—source program-text

-E file
--exec file

Provide program source code in the program-text. This option allows you to mix
source code in files with source code that you enter on the command line. This is
particularly useful when you have library functions that you want to use from
your command-line programs (see Section 2.5.1 [The AWKPATH Environment
Variable], page 39).
Note that gawk treats each string as if it ended with a newline character (even
if it doesn’t). This makes building the total program easier.
CAUTION: At the moment, there is no requirement that each
program-text be a full syntactic unit. I.e., the following currently
works:
$ gawk -e ’BEGIN { a = 5 ;’ -e ’print a }’
4 5
However, this could change in the future, so it’s not a good idea to
rely upon this feature.

Similar to -f, read awk program text from file. There are two differences from
-f:
e This option terminates option processing; anything else on the command
line is passed on directly to the awk program.

e Command-line variable assignments of the form ‘var=value’ are disal-
lowed.

This option is particularly necessary for World Wide Web CGI applications
that pass arguments through the URL; using this option prevents a malicious
(or other) user from passing in options, assignments, or awk source code (via

34 GAWK: Effective AWK Programming

)
--gen-pot

-h
--help

-e) to the CGI application.! This option should be used with ‘#!” scripts (see
Section 1.1.4 [Executable awk Programs], page 19), like so:

#! /usr/local/bin/gawk -E

awk program here ...

Analyze the source program and generate a GNU gettext portable object
template file on standard output for all string constants that have been marked
for translation. See Chapter 13 [Internationalization with gawk]|, page 333, for
information about this option.

Print a “usage” message summarizing the short- and long-style options that
gawk accepts and then exit.

-i source-file
--include source-file

-1 ext
—-load ext

-L[value]

Read an awk source library from source-file. This option is completely equivalent
to using the @include directive inside your program. It is very similar to the
-f option, but there are two important differences. First, when -i is used, the
program source is not loaded if it has been previously loaded, whereas with
-f, gawk always loads the file. Second, because this option is intended to be
used with code libraries, gawk does not recognize such files as constituting main
program input. Thus, after processing an -i argument, gawk still expects to
find the main source code via the —f option or on the command line.

Load a dynamic extension named ext. Extensions are stored as system shared
libraries. This option searches for the library using the AWKLIBPATH environment
variable. The correct library suffix for your platform will be supplied by default,
so it need not be specified in the extension name. The extension initialization
routine should be named d1_load (). An alternative is to use the @load keyword
inside the program to load a shared library. This advanced feature is described
in detail in Chapter 16 [Writing Extensions for gawk], page 373.

--lint[=value]

Warn about constructs that are dubious or nonportable to other awk imple-
mentations. No space is allowed between the -L and value, if value is supplied.
Some warnings are issued when gawk first reads your program. Others are
issued at runtime, as your program executes. With an optional argument of
‘fatal’, lint warnings become fatal errors. This may be drastic, but its use
will certainly encourage the development of cleaner awk programs. With an

1 For more detail, please see Section 4.4 of RFC 3875. Also see the explanatory note sent to the gawk bug
mailing list.

http://www.ietf.org/rfc/rfc3875
https://lists.gnu.org/archive/html/bug-gawk/2014-11/msg00022.html
https://lists.gnu.org/archive/html/bug-gawk/2014-11/msg00022.html

Chapter 2: Running awk and gawk 35

optional argument of ‘invalid’, only warnings about things that are actually
invalid are issued. (This is not fully implemented yet.)

Some warnings are only printed once, even if the dubious constructs they warn
about occur multiple times in your awk program. Thus, when eliminating prob-
lems pointed out by --1int, you should take care to search for all occurrences
of each inappropriate construct. As awk programs are usually short, doing so
is not burdensome.

—--bignum Select arbitrary-precision arithmetic on numbers. This option has no effect if
gawk is not compiled to use the GNU MPFR and MP libraries (see Chapter 15
[Arithmetic and Arbitrary-Precision Arithmetic with gawk], page 359).

-n
--non-decimal-data
Enable automatic interpretation of octal and hexadecimal values in input data
(see Section 12.1 [Allowing Nondecimal Input Data], page 315).

CAUTION: This option can severely break old programs. Use with
care. Also note that this option may disappear in a future version
of gawk.

-N
—--use-lc—numeric

Force the use of the locale’s decimal point character when parsing numeric input
data (see Section 6.6 [Where You Are Makes a Difference], page 137).

-olfile]

--pretty-print|=file]
Enable pretty-printing of awk programs. Implies ——no-optimize. By default,
the output program is created in a file named awkprof.out (see Section 12.5
[Profiling Your awk Programs|, page 326). The optional file argument allows
you to specify a different file name for the output. No space is allowed between
the -o and file, if file is supplied.

NOTE: In the past, this option would also execute your program.
This is no longer the case.

-0

--optimize
Enable gawk’s default optimizations on the internal representation of the pro-
gram. At the moment, this includes simple constant folding and tail recursion
elimination in function calls.

These optimizations are enabled by default. This option remains primarily for
backwards compatibility. However, it may be used to cancel the effect of an
earlier —s option (see later in this list).

-plfile]

--profile[=file]
Enable profiling of awk programs (see Section 12.5 [Profiling Your awk Pro-
grams|, page 326). Implies -—no-optimize. By default, profiles are created in

36 GAWK: Effective AWK Programming

-P
--posix

-r

a file named awkprof .out. The optional file argument allows you to specify a
different file name for the profile file. No space is allowed between the -p and
file, if file is supplied.

The profile contains execution counts for each statement in the program in the
left margin, and function call counts for each function.

Operate in strict POSIX mode. This disables all gawk extensions (just like
--traditional) and disables all extensions not allowed by POSIX. See
Section A.7 [Common Extensions Summary], page 450, for a summary of
the extensions in gawk that are disabled by this option. Also, the following
additional restrictions apply:

e Newlines are not allowed after ‘?” or ‘:’ (see Section 6.3.4 [Conditional
Expressions], page 134).

e Specifying ‘-Ft’ on the command line does not set the value of FS to be
a single TAB character (see Section 4.5 [Specifying How Fields Are Sepa-
rated], page 69).

e The locale’s decimal point character is used for parsing input data (see
Section 6.6 [Where You Are Makes a Difference], page 137).

If you supply both —-traditional and --posix on the command line, -—posix
takes precedence. gawk issues a warning if both options are supplied.

--re-interval

-S

Allow interval expressions (see Section 3.3 [Regular Expression Operators],
page 50) in regexps. This is now gawk’s default behavior. Nevertheless, this
option remains (both for backward compatibility and for use in combination
with -——traditional).

--no-optimize

-S
—-sandbox

-t

—--lint-old

Disable gawk’s default optimizations on the internal representation of the pro-
gram.

Disable the system() function, input redirections with getline, output redi-
rections with print and printf, and dynamic extensions. This is particularly
useful when you want to run awk scripts from questionable sources and need to
make sure the scripts can’t access your system (other than the specified input
data file).

Warn about constructs that are not available in the original version of awk from
Version 7 Unix (see Section A.1 [Major Changes Between V7 and SVR3.1],
page 439).

Chapter 2: Running awk and gawk 37

-V

--version
Print version information for this particular copy of gawk. This allows you to
determine if your copy of gawk is up to date with respect to whatever the Free
Software Foundation is currently distributing. It is also useful for bug reports
(see Section B.4 [Reporting Problems and Bugs], page 470).

As long as program text has been supplied, any other options are flagged as invalid with
a warning message but are otherwise ignored.

In compatibility mode, as a special case, if the value of fs supplied to the -F option is
‘t’, then FS is set to the TAB character ("\t"). This is true only for --traditional and
not for ——posix (see Section 4.5 [Specifying How Fields Are Separated], page 69).

The -f option may be used more than once on the command line. If it is, awk reads
its program source from all of the named files, as if they had been concatenated together
into one big file. This is useful for creating libraries of awk functions. These functions can
be written once and then retrieved from a standard place, instead of having to be included
in each individual program. The -i option is similar in this regard. (As mentioned in
Section 9.2.1 [Function Definition Syntax|, page 213, function names must be unique.)

With standard awk, library functions can still be used, even if the program is entered at
the keyboard, by specifying ‘-f /dev/tty’. After typing your program, type Ctrl-d (the
end-of-file character) to terminate it. (You may also use ‘-f -’ to read program source from
the standard input, but then you will not be able to also use the standard input as a source
of data.)

Because it is clumsy using the standard awk mechanisms to mix source file and command-
line awk programs, gawk provides the —e option. This does not require you to preempt the
standard input for your source code; it allows you to easily mix command-line and library
source code (see Section 2.5.1 [The AWKPATH Environment Variable|, page 39). As with -f,
the —e and -i options may also be used multiple times on the command line.

If no -f or -e option is specified, then gawk uses the first nonoption command-line
argument as the text of the program source code.

If the environment variable POSIXLY_CORRECT exists, then gawk behaves in strict POSIX
mode, exactly as if you had supplied ——posix. Many GNU programs look for this environ-
ment variable to suppress extensions that conflict with POSIX, but gawk behaves differently:
it suppresses all extensions, even those that do not conflict with POSIX, and behaves in
strict POSIX mode. If --1int is supplied on the command line and gawk turns on POSIX
mode because of POSIXLY_CORRECT, then it issues a warning message indicating that POSIX
mode is in effect. You would typically set this variable in your shell’s startup file. For a
Bourne-compatible shell (such as Bash), you would add these lines to the .profile file in
your home directory:

POSIXLY_CORRECT=true
export POSIXLY_CORRECT
For a C shell-compatible shell,> you would add this line to the .login file in your home
directory:
setenv POSIXLY_CORRECT true

2 Not recommended.

—(x

38 GAWK: Effective AWK Programming

Having POSIXLY_CORRECT set is not recommended for daily use, but it is good for testing
the portability of your programs to other environments.

2.3 Other Command-Line Arguments

Any additional arguments on the command line are normally treated as input files to be
processed in the order specified. However, an argument that has the form var=value, as-
signs the value value to the variable var—it does not specify a file at all. (See Section 6.1.3.2
[Assigning Variables on the Command Line], page 118.) In the following example, count=1
is a variable assignment, not a file name:

awk -f program.awk filel count=1 file2

All the command-line arguments are made available to your awk program in the ARGV
array (see Section 7.5 [Predefined Variables|, page 157). Command-line options and the
program text (if present) are omitted from ARGV. All other arguments, including variable
assignments, are included. As each element of ARGV is processed, gawk sets ARGIND to the
index in ARGV of the current element.

Changing ARGC and ARGV in your awk program lets you control how awk processes the
input files; this is described in more detail in Section 7.5.3 [Using ARGC and ARGV], page 166.

The distinction between file name arguments and variable-assignment arguments is made
when awk is about to open the next input file. At that point in execution, it checks the file
name to see whether it is really a variable assignment; if so, awk sets the variable instead
of reading a file.

Therefore, the variables actually receive the given values after all previously specified
files have been read. In particular, the values of variables assigned in this fashion are
not available inside a BEGIN rule (see Section 7.1.4 [The BEGIN and END Special Patterns],
page 144), because such rules are run before awk begins scanning the argument list.

The variable values given on the command line are processed for escape sequences (see
Section 3.2 [Escape Sequences]|, page 48).

In some very early implementations of awk, when a variable assignment occurred before
any file names, the assignment would happen before the BEGIN rule was executed. awk’s
behavior was thus inconsistent; some command-line assignments were available inside the
BEGIN rule, while others were not. Unfortunately, some applications came to depend upon
this “feature.” When awk was changed to be more consistent, the -v option was added to
accommodate applications that depended upon the old behavior.

The variable assignment feature is most useful for assigning to variables such as RS, OFS,
and ORS, which control input and output formats, before scanning the data files. It is also
useful for controlling state if multiple passes are needed over a data file. For example:

awk ’pass == 1 { pass 1 stuff }
pass == 2 { pass 2 stuff }’ pass=1 mydata pass=2 mydata

Given the variable assignment feature, the -F option for setting the value of FS is not
strictly necessary. It remains for historical compatibility.

Chapter 2: Running awk and gawk 39

2.4 Naming Standard Input

Often, you may wish to read standard input together with other files. For example, you
may wish to read one file, read standard input coming from a pipe, and then read another

file.

The way to name the standard input, with all versions of awk, is to use a single, stand-
alone minus sign or dash, ‘-’. For example:

some_command | awk -f myprog.awk filel - file2

Here, awk first reads filel, then it reads the output of some_command, and finally it reads
file2.

You may also use "-" to name standard input when reading files with getline (see
Section 4.10.3 [Using getline from a File], page 83).

In addition, gawk allows you to specify the special file name /dev/stdin, both on the
command line and with getline. Some other versions of awk also support this, but it is not
standard. (Some operating systems provide a /dev/stdin file in the filesystem; however,
gawk always processes this file name itself.)

2.5 The Environment Variables gawk Uses

A number of environment variables influence how gawk behaves.

2.5.1 The AWKPATH Environment Variable

In most awk implementations, you must supply a precise pathname for each program file,
unless the file is in the current directory. But with gawk, if the file name supplied to the
-f or -i options does not contain a directory separator ‘/’, then gawk searches a list of
directories (called the search path) one by one, looking for a file with the specified name.

The search path is a string consisting of directory names separated by colons.> gawk
gets its search path from the AWKPATH environment variable. If that variable does not exist,
or if it has an empty value, gawk uses a default path (described shortly).

The search path feature is particularly helpful for building libraries of useful awk func-
tions. The library files can be placed in a standard directory in the default path and then
specified on the command line with a short file name. Otherwise, you would have to type
the full file name for each file.

By using the -i or —f options, your command-line awk programs can use facilities in awk
library files (see Chapter 10 [A Library of awk Functions|, page 233). Path searching is not
done if gawk is in compatibility mode. This is true for both --traditional and --posix.
See Section 2.2 [Command-Line Options|, page 31.

If the source code file is not found after the initial search, the path is searched again
after adding the suffix ‘.awk’ to the file name.

gawk’s path search mechanism is similar to the shell’s. (See The Bourne-Again SHell
manual.) It treats a null entry in the path as indicating the current directory. (A null entry
is indicated by starting or ending the path with a colon or by placing two colons next to
each other [‘::7].)

3 Semicolons on MS-Windows.

https://www.gnu.org/software/bash/manual/
https://www.gnu.org/software/bash/manual/

40 GAWK: Effective AWK Programming

NOTE: To include the current directory in the path, either place . as an entry
in the path or write a null entry in the path.

Different past versions of gawk would also look explicitly in the current direc-
tory, either before or after the path search. As of version 4.1.2, this no longer
happens; if you wish to look in the current directory, you must include . either
as a separate entry or as a null entry in the search path.

The default value for AWKPATH is ‘. : /usr/local/share/awk’.* Since . is included at the
beginning, gawk searches first in the current directory and then in /usr/local/share/awk.
In practice, this means that you will rarely need to change the value of AWKPATH.

See Section B.2.2 [Shell Startup Files|, page 462, for information on functions that help
to manipulate the AWKPATH variable.

gawk places the value of the search path that it used into ENVIRON ["AWKPATH"]. This
provides access to the actual search path value from within an awk program.

Although you can change ENVIRON["AWKPATH"] within your awk program, this has no
effect on the running program’s behavior. This makes sense: the AWKPATH environment
variable is used to find the program source files. Once your program is running, all the files
have been found, and gawk no longer needs to use AWKPATH.

2.5.2 The AWKLIBPATH Environment Variable

The AWKLIBPATH environment variable is similar to the AWKPATH variable, but it is used to
search for loadable extensions (stored as system shared libraries) specified with the -1 option
rather than for source files. If the extension is not found, the path is searched again after
adding the appropriate shared library suffix for the platform. For example, on GNU /Linux
systems, the suffix ‘.so’ is used. The search path specified is also used for extensions loaded
via the @load keyword (see Section 2.8 [Loading Dynamic Extensions into Your Program]
page 44).

)

If AWKLIBPATH does not exist in the environment, or if it has an empty value, gawk uses
a default path; this is typically ‘/usr/local/lib/gawk’, although it can vary depending
upon how gawk was built.

See Section B.2.2 [Shell Startup Files|, page 462, for information on functions that help
to manipulate the AWKLIBPATH variable.

gawk places the value of the search path that it used into ENVIRON ["AWKLIBPATH"]. This
provides access to the actual search path value from within an awk program.

Although you can change ENVIRON ["AWKLIBPATH"] within your awk program, this has no
effect on the running program’s behavior. This makes sense: the AWKLIBPATH environment
variable is used to find any requested extensions, and they are loaded before the program
starts to run. Once your program is running, all the extensions have been found, and gawk
no longer needs to use AWKLIBPATH.

2.5.3 Other Environment Variables

A number of other environment variables affect gawk’s behavior, but they are more special-
ized. Those in the following list are meant to be used by regular users:

4 Your version of gawk may use a different directory; it will depend upon how gawk was built and installed.
The actual directory is the value of $(datadir) generated when gawk was configured. You probably
don’t need to worry about this, though.

Chapter 2: Running awk and gawk 41

GAWK_MSEC_SLEEP
Specifies the interval between connection retries, in milliseconds. On systems
that do not support the usleep() system call, the value is rounded up to an
integral number of seconds.

GAWK_READ_TIMEQOUT
Specifies the time, in milliseconds, for gawk to wait for input before returning
with an error. See Section 4.11 [Reading Input with a Timeout], page 88.

GAWK_SOCK_RETRIES
Controls the number of times gawk attempts to retry a two-way TCP/IP
(socket) connection before giving up. See Section 12.4 [Using gawk for
Network Programming], page 325. Note that when nonfatal I/O is enabled
(see Section 5.10 [Enabling Nonfatal Output|, page 109), gawk only tries to
open a TCP/IP socket once.

POSIXLY_CORRECT
Causes gawk to switch to POSIX-compatibility mode, disabling all traditional
and GNU extensions. See Section 2.2 [Command-Line Options|, page 31.

The environment variables in the following list are meant for use by the gawk developers
for testing and tuning. They are subject to change. The variables are:

AWKBUFSIZE
This variable only affects gawk on POSIX-compliant systems. With a value of
‘exact’, gawk uses the size of each input file as the size of the memory buffer
to allocate for I/O. Otherwise, the value should be a number, and gawk uses
that number as the size of the buffer to allocate. (When this variable is not
set, gawk uses the smaller of the file’s size and the “default” blocksize, which is
usually the filesystem’s I/O blocksize.)

AWK_HASH If this variable exists with a value of ‘gst’, gawk switches to using the hash func-
tion from GNU Smalltalk for managing arrays. This function may be marginally
faster than the standard function.

AWKREADFUNC
If this variable exists, gawk switches to reading source files one line at a time,
instead of reading in blocks. This exists for debugging problems on filesystems

on non-POSIX operating systems where 1/O is performed in records, not in
blocks.

GAWK_MSG_SRC
If this variable exists, gawk includes the file name and line number within the
gawk source code from which warning and/or fatal messages are generated. Its
purpose is to help isolate the source of a message, as there are multiple places
that produce the same warning or error message.

GAWK_LOCALE_DIR
Specifies the location of compiled message object files for gawk itself. This is
passed to the bindtextdomain() function when gawk starts up.

42 GAWK: Effective AWK Programming

GAWK_NO_DFA
If this variable exists, gawk does not use the DFA regexp matcher for “does it
match” kinds of tests. This can cause gawk to be slower. Its purpose is to help
isolate differences between the two regexp matchers that gawk uses internally.
(There aren’t supposed to be differences, but occasionally theory and practice
don’t coordinate with each other.)

GAWK_STACKSIZE
This specifies the amount by which gawk should grow its internal evaluation
stack, when needed.

INT_CHAIN_MAX
This specifies intended maximum number of items gawk will maintain on a hash
chain for managing arrays indexed by integers.

STR_CHAIN_MAX
This specifies intended maximum number of items gawk will maintain on a hash
chain for managing arrays indexed by strings.

TIDYMEM If this variable exists, gawk uses the mtrace() library calls from the GNU C
library to help track down possible memory leaks.

2.6 gawk’s Exit Status

If the exit statement is used with a value (see Section 7.4.10 [The exit Statement]
page 156), then gawk exits with the numeric value given to it.

9

Otherwise, if there were no problems during execution, gawk exits with the value of the
C constant EXIT_SUCCESS. This is usually zero.

If an error occurs, gawk exits with the value of the C constant EXIT_FAILURE. This is
usually one.

If gawk exits because of a fatal error, the exit status is two. On non-POSIX systems,
this value may be mapped to EXIT_FAILURE.

2.7 Including Other Files into Your Program

This section describes a feature that is specific to gawk.

The @include keyword can be used to read external awk source files. This gives you the
ability to split large awk source files into smaller, more manageable pieces, and also lets you
reuse common awk code from various awk scripts. In other words, you can group together
awk functions used to carry out specific tasks into external files. These files can be used
just like function libraries, using the @include keyword in conjunction with the AWKPATH
environment variable. Note that source files may also be included using the -i option.

Let’s see an example. We'll start with two (trivial) awk scripts, namely test1 and test2.
Here is the test1 script:

BEGIN {
print "This is script testl."

}

and here is test2:
@include "testl"

Chapter 2: Running awk and gawk 43

BEGIN {
print "This is script test2."

¥

Running gawk with test2 produces the following result:

$ gawk -f test2
- This is script testl.
- This is script test2.

gawk runs the test2 script, which includes test1 using the @include keyword. So, to
include external awk source files, you just use @include followed by the name of the file to
be included, enclosed in double quotes.

NOTE: Keep in mind that this is a language construct and the file name cannot
be a string variable, but rather just a literal string constant in double quotes.

The files to be included may be nested; e.g., given a third script, namely test3:

@include "test2"
BEGIN {
print "This is script test3."

¥

Running gawk with the test3 script produces the following results:

$ gawk -f test3

- This is script testl.
-4 This is script test2.
- This is script test3.

The file name can, of course, be a pathname. For example:
@include "../io_funcs"
and:
@include "/usr/awklib/network"

are both valid. The AWKPATH environment variable can be of great value when using
@include. The same rules for the use of the AWKPATH variable in command-line file searches
(see Section 2.5.1 [The AWKPATH Environment Variable|, page 39) apply to @include also.

This is very helpful in constructing gawk function libraries. If you have a large script
with useful, general-purpose awk functions, you can break it down into library files and put
those files in a special directory. You can then include those “libraries,” either by using the
full pathnames of the files, or by setting the AWKPATH environment variable accordingly and
then using @include with just the file part of the full pathname. Of course, you can keep
library files in more than one directory; the more complex the working environment is, the
more directories you may need to organize the files to be included.

Given the ability to specify multiple -f options, the @include mechanism is not strictly
necessary. However, the @include keyword can help you in constructing self-contained
gawk programs, thus reducing the need for writing complex and tedious command lines. In
particular, @include is very useful for writing CGI scripts to be run from web pages.

The rules for finding a source file described in Section 2.5.1 [The AWKPATH Environment
Variable|, page 39, also apply to files loaded with @include.

44 GAWK: Effective AWK Programming

2.8 Loading Dynamic Extensions into Your Program

This section describes a feature that is specific to gawk.

The @load keyword can be used to read external awk extensions (stored as system shared
libraries). This allows you to link in compiled code that may offer superior performance
and/or give you access to extended capabilities not supported by the awk language. The
AWKLIBPATH variable is used to search for the extension. Using @load is completely equiv-
alent to using the -1 command-line option.

If the extension is not initially found in AWKLIBPATH, another search is conducted after
appending the platform’s default shared library suffix to the file name. For example, on
GNU/Linux systems, the suffix ‘.so’ is used:

$ gawk ’@load "ordchr"; BEGIN {print chr(65)}’
- A

This is equivalent to the following example:

$ gawk -lordchr ’BEGIN {print chr(65)}’

- A
For command-line usage, the -1 option is more convenient, but @1 oad is useful for embedding
inside an awk source file that requires access to an extension.

Chapter 16 [Writing Extensions for gawk]|, page 373, describes how to write extensions
(in C or C++) that can be loaded with either @load or the -1 option. It also describes the
ordchr extension.

2.9 Obsolete Options and/or Features

This section describes features and/or command-line options from previous releases of gawk
that either are not available in the current version or are still supported but deprecated
(meaning that they will not be in the next release).

The process-related special files /dev/pid, /dev/ppid, /dev/pgrpid, and /dev/user
were deprecated in gawk 3.1, but still worked. As of version 4.0, they are no longer inter-
preted specially by gawk. (Use PROCINFO instead; see Section 7.5.2 [Built-in Variables That
Convey Information], page 159.)

2.10 Undocumented Options and Features
Use the Source, Luke!
—Obi-Wan
This section intentionally left blank.

2.11 Summary

e Use either ‘awk ’program’ files’ or ‘awk -f program-file files’ to run awk.

e The three standard options for all versions of awk are -f, -F, and -v. gawk supplies
these and many others, as well as corresponding GNU-style long options.

e Nonoption command-line arguments are usually treated as file names, unless they have

the form ‘var=value’, in which case they are taken as variable assignments to be
performed at that point in processing the input.

Chapter 2: Running awk and gawk 45

All nonoption command